首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in the level of 1-(malonylamino)-cyclopropane-1-carboxylic acid (MACC) were determined in 6 winter wheat cultivars during cold hardening at 4°C. The cultivars differed by one degree of frost resistance within the range of degree II to VII of the COMECON scale. The time-course of changes in MACC level showed a similar pattern in all 6 cultivars; i.e. increase till day 6, no changes for the next 10 days, and then a steady decrease till the end of the hardening period. There was little difference between the final and the initial levels. The increase of MACC level, expressed as per cent of the original level, was not directly correlated with either the degree of frost resistance of the actual percentage of survival. In some cultivars. mean errors exceeded the difference in MACC accumulation between cultivars closest on the resistance scale.
The fate of MACC during the second half of hardening and after transfer of plants to 25°C was studied in cultivars Bezostaya and San Pastore. During the second half of the hardening period the level of MACC decreased in the leaves of both cultivars, but increased significantly in the roots. Within two days of transfer of the hardened plants to 25°C, the MACC level in leaves increased again, while that in the roots decreased. This finding, together with the preliminary evidence of very low MACC metabolism, strongly suggest that MACC accumulates in roots during the hardening period and when transferred to 25°C, it moves from roots to leaves.  相似文献   

2.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

3.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

4.
Changes of metabolic activities during dormancy and breaking of dormancy in the cherry flower buds of early blooming (EB) cultivar ( Prunus avium L. cv. Coeur de Pigeon) and late blooming (LB) cultivar ( Prunus serrulata Lindl. cv. Kwanzan) were determined. The LB buds had higher polyamines, protein and 1-(malonylamino) cyclopropane-1-carboxylic acid (MACC) content than the EB buds. During the dormant state, the DNA, RNA, protein and polyamines in the EB buds were low but increased slowly and steadily, whereas those in the LB buds remained at a consistently higher level. The transition from dormancy to the active state in both cultivars was characterized by a sharp increase in DNA, RNA, protein, polyamines, S-adenosyl-methionine (SAM), 1-aminocyclopropane-1-carboxylic acid (ACC) and MACC. After initial swelling and development of flowers, the levels of all these components decreased. Polyamine and ethylene biosyntheses did not seem to be competing for their common substrate, SAM, during flower bud development.  相似文献   

5.
Foliar treatment of oilseed rape plants (Brassica napus L.ssp. napus cv. Linetta) with the growth retardant BAS 111..W at the 5th leaf stage delayed pod senescence during early maturation. Changes of immunoreactive cytokinin- and abscisic acid (ABA)- like substances and of the ethylene precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) and its malonyl-conjugate (MACC) were determined in intact whole pods. When compared with control plants, higher levels of total chlorophyll correlated with four-fold and three-fold increases of trans-zeatin riboside- and dihydrozeatin riboside-type cytokinins, respectively, in the pods of plants treated with 0.25 mg BAS 111..W per plant. Isopentenyladenosine-type cytokinins and ACC and MACC contents remained virtually unchanged, whereas ABA levels dropped considerably below those of controls (60% reduction). However, when analysed at late pod maturity, BAS 111..W treatment no longer affected the total chlorophyll content, or the levels of cytokinins, ABA, ACC and MACC. We hypothesize that the retardant-induced changes in the hormonal status of the pods, favouring the senescence-delaying cytokinins as opposed to abscisic acid, could contribute to the developmental delay.  相似文献   

6.
The effect of 0.5 mM salicylic acid (SA) pretreatment and of growing at hardening temperatures on chilling-induced changes in 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) was investigated in young maize (Zea mays L.) plants grown in hydroponic solution at 22/20 °C. Chilling at 5 °C caused an increase in ACC content;however, this increase was less pronounced in plants cold acclimated at 13/11 °C 4 d before the chilling treatment, and in those which were pretreated with SA for 1 d before the cold stress. Changes in MACC at low temperature showed no correlation with chilling tolerance in maize.  相似文献   

7.
During the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV) the inoculated leaves synthesize large quantities of ethylene. At the same time, 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) accumulates. Smaller amounts of MACC are formed concomitant with ethylene synthesis during the normal development of tobacco leaves. The conjugate appears neither to be hydrolysed to liberate ACC, nor to be transported to other plant parts. Its accumulation thus reflects the history of the operation of the pathway of ethylene synthesis in the leaf. In floating leaf discs exogenously applied ACC was converted only slowly to both ethylene and MACC. More ethylene and less MACC were produced in darkness than in light, suggesting that environmental conditions may influence the ratio at which ACC in converted to either ethylene or MACC.  相似文献   

8.
9.
Intracellular compartmentation of 1-aminocyclopropane-1-carboxylic acid (ACC) and N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) in wheat ( Triticum aestivum L. cv. Kanzler) and barley ( Hordeum vulgare L. cv. Gerbel) leaves was studied using different methods: first, the isolation of intact vacuoles from protoplasts and, second, a non-aqueous fractionation procedure. The two methods gave similar results. ACC concentrations were similar in the extravacuolar space and in the vacuole, whereas MACC was accumulated in the vacuolar space. Transport studies revealed that no specific carrier for ACC exists at the tonoplast. MACC transfer across the tonoplast was enhanced by 120% in the presence of ATP. MACC competitively inhibited malate transport into the vacuole indicating that the same transfer system catalyzes the transfer of the two dicarboxylates.
It is concluded that malonylation of ACC is not a prerequisite for the transport of ACC through the tonoplast.  相似文献   

10.
Ethylene production by intact green bean ( Phaseolus vulgaris L. cv. Limburgse vroege) seedlings was investigated in white light and in darkness. In white light both endogenous and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene production were stimulated. A decrease in the 1-(malonylamino)cyclopropane-1-carboxylic acid (M-ACC) level and a slight increase in the free ACC concentration could be observed in light. The total amount of endogenous ACC was not changed by light. We related the effect of light to the effect of paraquat on ethylene biosynthesis. Paraquat caused a strong increase of endogenous ethylene production in light. However, the conversion of exogenously applied ACC in light was not influenced by the paraquat treatment, although the presence of the herbicide in the chloroplasts was evident through the inhibition of net photosynthesis. In light, paraquat increased the total ACC content. This was due to an enlargement of the free ACC pool. The effects of white light and paraquat on ethylene biosynthesis can be differentiated from one another: white light exerts its influence on the conversion of ACC to ethylene; it also seems to inhibit the malonylation and may act on the formation of ACC itself. Paraquat influences only ACC synthesis.  相似文献   

11.
Yang J  Zhang J  Liu K  Wang Z  Liu L 《The New phytologist》2006,171(2):293-303
Grain filling is an intensive transportation process regulated by soil drying and plant hormones. This study investigated how the interaction between abscisic acid (ABA) and ethylene is involved in mediating the effects of soil drying on grain filling in wheat (Triticum aestivum). Two wheat cultivars, cv. Yangmai 6 and cv. Yangmai 11, were field-grown, and three irrigation treatments, well-watered, moderately soil-dried (MD) and severely soil-dried (SD), were imposed from 9 d post anthesis until maturity. A higher ABA concentration and lower concentrations of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) were found in superior grains (within a spike, those grains that were filled earlier and reached a greater size) than in inferior grains (within a spike, those grains that were filled later and were smaller), and were associated with a higher filling rate in the superior grains. An increase in ABA concentration and reductions in ethylene and ACC concentrations in grains under MD conditions increased the grain-filling rate, whereas much higher ethylene, ACC and ABA concentrations under SD conditions reduced the grain-filling rate. Application of chemical regulators gave similar results. The results did not differ between the two cultivars. The grain-filling rate in wheat is mediated by the balance between ABA and ethylene in the grains, and an increase in the ratio of ABA to ethylene increases the grain-filling rate.  相似文献   

12.
本实验用CaCl_2溶液对香蕉(Musa acuminata cf. 'Dwarf Davendish')组织进行真空浸透处理,研究Ca~(2 )对香蕉采后乙烯释放、EFE活性、ACC水平以及ACC/MACC比值的影响。结果表明,Ca~(2 )处理可抑制香蕉果皮和果肉组织乙烯生成,对抑制果皮的乙烯生成尤为明显。Ca~(2 )处理还可降低内源ACC水平,抑制EFE活性。结果还显示,Ca~(2 )处理对组织中ACC/MACC比值有一定影响。  相似文献   

13.
Since the discovery of1-(malonylamino)cyclopropane-1-carboxylic acid (MACC)as a major metabolite of both endogenous andexogenously applied 1-aminocyclopropane-1-carboxylicacid (ACC), it has become evident that the formationof MACC from ACC can act to regulate ethyleneproduction in certain tissues. Hence it was suggestedthat MACC could serve as an indicator of water-stresshistory in plant tissues. The accurate quantificationof MACC in plant tissues is essential forunderstanding the role of MACC in the regulation ofethylene biosynthesis.Hoffman et al. [15] described a method for themeasurement of MACC in which MACC was hydrolysed byHCl to ACC, which was then assayed by chemicaloxidation to form ethylene. Attempts have been made byothers to raise monoclonal antibodies to MACC so thatan immunoassay could be developed in order to gain adeeper understanding of stress-induced ethyleneproduction but no further publications have beenforthcoming.Here a method employing GC-MS is compared with theindirect assay for MACC, which is based uponhydrolysis of MACC to ACC and conversion of ACC byhypochlorite reagent to ethylene which is subsequentlyquantified by GC.  相似文献   

14.
Hypobaric conditions and treatments with ethylene and the ethylene analogue propylene were used to investigate effects of oxygen and elhylene on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity and ethylene production of apples ( Malus sylveslris Mill. cv. Golden Delicious). Prcclimacteric apples were stored in air at 6.6 kPa (reduced pressure); 6.6 kPa ventilated with pure O2; 6.6 kPa ventilated with 2600 μl 1−1 C2H4; and in air at 101.3 kPa (atmospheric pressure) for 4 months at 4°C. No ACC synthase activity was detectable in apples stored at 6.6 kPa, whereas ACC synthase activity was induced in apples stored at 6.6 kPa and ventilated with either O2 or C2H4. In a further experiment, preclimacteric apples were stored for 14 days either in air at 20 kPa or at 20 kPa ventilated with pure O2. Both treatments were supplied with 58 500 μl 1−1 propylene from day 0 to day 9 or from day 9 to day 12. Ethylene production of apples treated with propylene from day 0 to day 9 increased earlier than ethylene production of untreated apples. Propylene treatment from day 9 to day 12 did not stimulate ethylene production. Ethylene and propylene induced and stimulated extractable ACC synthase activity and ACC formation of apples. Oxygen enhanced this effect. The results also suggest inhibition of in vivo ACC synthase activity by propylene.  相似文献   

15.
Ethylene biosynthesis in leaf discs of tobacco ( Nicotiana tabacum L. cv. Xanthi), as measured by the conversion of L-[3,4-14C]-methionine to 14C2H4, was markedly inhibited by exogenous ethylene. This inhibition was accompanied by a decrease in total (free + conjugated) content of 1-aminocyclopropane-1-carboxylic acid (ACC), most of which appeared in its conjugated inactive form. The autoinhibitory effect of ethylene was reversible and could be relieved by Ag+. The Ag+-treated leaf discs, with or without ethylene, contained only free ACC at an increased level. The results suggest that in tobacco leaves, the autoinhibition of ethylene production resulted from reduction in the availability of free ACC, through both suppression of ACC formation and increased ACC conjugation.  相似文献   

16.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

17.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

18.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

19.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

20.
Effects of water stress on production of ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), by loblolly pine ( Pinus taeda L.) seedlings from a Texas drought-hardy and a Virginia Coastal Plain source were investigated. Ethylene production rates in needles from the Virgnia source increased slightly with initial stress (-1.3 MPa), declined until water potential reached -1.6 MPa and then increased sharply at -2.5 MPa. The ethylene production rates in needles from the Texas also increased slightly with initial stress, then decreased with decreasing water potential. Ethylene production by root tissue was two to three times higher than needle tissue and decreased with decreasing water potential. ACC concentrations in needles of both seed sources decreased as water potential began decreasing. Below -1.4 MPa, ACC levels started increasing (Texas source) or remained constant until -2.8 MPa (Virginia source) at which time its level increased three-fold. Mean ACC levels in root tissue [122 nmol (g dry weight)−1] were slightly higher than the mean levels in the needle tissue [92 nmol (g dry weight) −1]; roots apparently were more efficient in converting it to ethylene since ethylene production was two to three times higher than needle tissue. The modulation of ethylene synthesis by ACC synthase and ethyleneforming enzyme appeared to be influenced by stress level, organ and seed source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号