首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predators often feed on prey that show ineffective antipredator behavior. Gene flow among populations may constrain evolution of effective antipredator ability in larvae of the streamside salamander, Ambystoma barbouri, a species that occupies distinctly different habitats with conflicting selection pressures. Some streams are ephemeral, where larvae should be active to feed and reach metamorphosis before stream drying. In contrast, other streams are more permanent and contain pools with predatory fish, where larvae should remain inactive to avoid fish predation. Feeding rates and predator escape behavior were assayed for laboratory-reared larvae from 15 populations. Larval survival was also compared among populations in artificial streams with natural predators. Five populations represented streams subjected to fish predation along a gradient of genetic and geographic isolation from populations without fish; the remaining 10 populations were ephemeral and without fish. Individuals from populations with fish had significantly stronger behavioral responses to fish (i.e., decreased feeding rate associated with the presence of fish and increased escape response) than individuals from fishless populations. Larvae from populations containing fish that were more isolated from fishless populations showed stronger antipredator responses than less isolated populations. Further, larvae from more isolated populations survived longer in the predation experiment, indicating that the behaviors measured were related with survival. These results suggest that gene flow between populations with conflicting selection pressures limits local adaptation in some salamander populations with fish. While previous studies have typically focused on the role of gene flow in pairs of populations, the results of this study suggest that gene flow is acting to swamp local adaptation across several populations.  相似文献   

2.
Somatosensory neurons in teleosts and amphibians are sensitive to thermal, mechanical, or nociceptive stimuli [1, 2]. The two main types of such cells in zebrafish--Rohon-Beard and trigeminal neurons--have served as models for neural development [3-6], but little is known about how they encode tactile stimuli. The hindbrain networks that transduce somatosensory stimuli into a motor output encode information by using very few spikes in a small number of cells [7], but it is unclear whether activity in the primary receptor neurons is similarly efficient. To address this question, we manipulated the activity of zebrafish neurons with the light-activated cation channel, Channelrhodopsin-2 (ChR2) [8, 9]. We found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish. Electrophysiological recordings from ChR2-positive trigeminal neurons in intact fish revealed that these cells have extremely low rates of spontaneous activity and can be induced to fire by brief pulses of blue light. Using this technique, we find that even a single action potential in a single sensory neuron was at times sufficient to evoke an escape behavior. These results establish ChR2 as a powerful tool for the manipulation of neural activity in zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.  相似文献   

3.
K S Vogel  A M Davies 《Neuron》1991,7(5):819-830
To investigate how the onset of neurotrophic factor dependence in neurons is coordinated with the arrival of their axons in the target field, we have studied the survival of four populations of cranial sensory neurons whose axons reach their common central target field, the hindbrain, at different times. We show that neurons whose axons reach the hindbrain first survive for a short time in culture before responding to brain-derived neurotrophic factor (BDNF). Neurons whose axons reach the hindbrain later survive longer before responding to BDNF. These differences in survival, which arise prior to gangliogenesis, may play a role in coordinating trophic interactions for cranial sensory neurons.  相似文献   

4.
K S Liu  J R Fetcho 《Neuron》1999,23(2):325-335
Segmentation of the vertebrate brain is most obvious in the hindbrain, where successive segments contain repeated neuronal types. One such set of three repeated reticulospinal neurons--the Mauthner cell, MiD2cm, and MiD3cm--is thought to produce different forms of the escape response that fish use to avoid predators. We used laser ablations in larval zebrafish to test the hypothesis that these segmental hindbrain cells form a functional group. Killing all three cells eliminated short-latency, high-performance escape responses to both head- and tail-directed stimuli. Killing just the Mauthner cell affected escapes from tail-directed but not from head-directed stimuli. These results reveal the contributions of one set of reticulospinal neurons to behavior and support the idea that serially repeated hindbrain neurons form functional groups.  相似文献   

5.
Calcium metabolism was studied in relation to ovarian functions and embryonic development during early and late pregnancy in the viviparous blenny Zoarces viviparus . The level of total calcium in the maternal serum decreased during pregnancy from 21·7 (± 2·6) to 8·7 (± 1·1) mg 100 ml−1. Calcium in the ovarian fluid surrounding the embryos appeared at a level which was always lower than in the maternal blood. The calcium content of the embryos increased during their development in the ovarian cavity. During early pregnancy, oestradiol-treatment increased the level of total calcium and alkkali-labile protein P (vitellogenin) in serum of the maternal organism, but did not have any effect on the level of ultrafiltrable calcium. However, in the untreated females, the post-ovulatory follicles, believed to act as calyces nutriciae in the pregnant ovary, were able to concentrate the ultrafiltrable calcium above the level in the serum. The activity of injected45Ca per unit plasma and follicular fluid volume was always higher in oestradiol-pretreated fish when compared with controls over a time course range. Embryos from females, which were not treated with oestradiol, accumulated high levels of labelled calcium and the accumulation was time-course dependent. Embryos from oestradiol-treated females showed low levels of tracer accumulation at all samplings and their appearance indicated an overall negative effect of oestradiol. During late pregnancy, labelled calcium showed a rapid turnover within 24 h post-injection in the maternal blood and ovarian fluid and a large accumulation in the embryos. Calcium influx in embryos, which were incubated with labelled calcium during 72 h in in vitro systems was largest during the initial 4·5–24h time interval.  相似文献   

6.
Little is known about the role of the hindbrain during development of spinal network activity. We set out to identify the activity patterns of reticulospinal (RS) neurons of the hindbrain in fictively swimming (paralyzed) zebrafish larvae. Simultaneous recordings of RS neurons and spinal motoneurons revealed that these were coactive during spontaneous fictive swim episodes. We characterized four types of RS activity patterns during fictive swimming: (i) a spontaneous pattern of discharges resembling evoked high-frequency spiking during startle responses to touch stimuli, (ii) a rhythmic pattern of excitatory postsynaptic potentials (EPSPs) whose frequency was similar to the motoneuron EPSP frequency during swim episodes, (iii) an arrhythmic pattern consisting of tonic firing throughout swim episodes, and (iv) RS cell activity uncorrelated with motoneuron activity. Despite lesions to the rostral spinal cord that prevented ascending spinal axons from entering the hindbrain (normally starting at approximately 20 h), RS neurons continued to display the aforementioned activity patterns at day 3. However, removal of the caudal portion of the hindbrain prior to the descent of RS axons left the spinal cord network unable to generate the rhythmic oscillations normally elicited by application of N-methyl-d-aspartate (NMDA), but in approximately 40% of cases chronic incubation in NMDA maintained rhythmic activity. We conclude that there is an autonomous embryonic hindbrain network that is necessary for proper development of the spinal central pattern generator, and that the hindbrain network can partially develop independently of ascending input.  相似文献   

7.
In this video, we demonstrate the preparation of primary neuronal cultures from the brains of late stage Drosophila pupae. The procedure begins with the removal of brains from animals at 70-78 hrs after puparium formation. The isolated brains are shown after brief incubation in papain followed by several washes in serum-free growth medium. The process of mechanical dissociation of each brain in a 5 ul drop of media on a coverslip is illustrated. The axons and dendrites of the post-mitotic neurons are sheered off near the soma during dissociation but the neurons begin to regenerate processes within a few hours of plating. Images show live cultures at 2 days. Neurons continue to elaborate processes during the first week in culture. Specific neuronal populations can be identified in culture using GAL4 lines to drive tissue specific expression of fluorescent markers such as GFP or RFP. Whole cell recordings have demonstrated the cultured neurons form functional, spontaneously active cholinergic and GABAergic synapses. A short video segment illustrates calcium dynamics in the cultured neurons using Fura-2 as a calcium indicator dye to monitor spontaneous calcium transients and nicotine evoked calcium responses in a dish of cultured neurons. These pupal brain cultures are a useful model system in which genetic and pharmacological tools can be used to identify intrinsic and extrinsic factors that influence formation and function of central synapses.  相似文献   

8.
Retrograde transport of fluorescent substances was used in order to investigate possible branching of axons from neurons in the oculomotor nucleus in the cat. Rhodamine-B-isothiocyanate (RITC) was injected into the cerebellar hemisphere, while Fluoro-Gold was implanted into the abducent nucleus. Neurons single-labelled with either of the dyes were found in the oculomotor nucleus in all cases, but no double-labelled neurons were found. The labelled cells were smaller than motoneurons and located in partly overlapping areas along the dorsal border of the oculomotor nucleus, with the RITC labelled cerebellar projecting cells concentrated medially and the Fluoro-Gold labelled neurons projecting to the abducent nucleus concentrated laterally. The RITC labelled cells were found throughout the rostrocaudal extent of the nucleus, while the Fluoro-Gold labelled cells were mainly found caudally. The present findings demonstrate that oculomotor neurons projecting to the feline cerebellum and abducent nucleus represent separate cell populations.  相似文献   

9.
Teleost fishes typically first encounter the environment as free-swimming embryos or larvae. Larvae are morphologically distinct from adults, and major anatomical structures are unformed. Thus, larvae undergo a series of dramatic morphological changes until they reach adult morphology (but are reproductively immature) and are considered juveniles. Free-swimming embryos and larvae are able to perform a C-start, an effective escape response that is used evade predators. However, escape response performance improves during early development: as young fish grow, they swim faster (length-specific maximum velocity increases) and perform the escape more rapidly (time to complete the behavior decreases). These improvements cease when fish become juveniles, although absolute swimming velocity (m s(-1)) continues to increase. We use studies of escape behavior and ontogeny in California halibut (Paralichthys californicus), rainbow trout (Oncorhynchus mykiss), and razorback suckers (Xyrauchen texanus) to test the hypothesis that specific morphological changes improve escape performance. We suggest that formation of the caudal fin improves energy transfer to the water and therefore increases thrust production and swimming velocity. In addition, changes to the axial skeleton during the larval period produce increased axial stiffness, which in turn allows the production of a more rapid and effective escape response. Because escape performance improves as adult morphology develops, fish that enter the environment in an advanced stage of development (i.e., those with direct development) should have a greater ability to evade predators than do fish that enter the environment at an early stage of development (i.e., those with indirect development).  相似文献   

10.
Ashworth R 《Cell calcium》2004,35(5):393-402
Calcium ions are known to act as important cellular signals during nervous system development. In vitro studies have provided significant information on the role of calcium signals during neuronal development; however, the function of this messenger in nervous system maturation in vivo remains to be established. The zebrafish has emerged as a valuable model for the study of vertebrate embryogenesis. Fertilisation is external and the rapid growth of the transparent embryo, including development of internal organs, can be observed easily making it well suited for imaging studies. The developing nervous system is relatively simple and has been well characterised, allowing individual neurons to be identified. Using the zebrafish model, both intracellular and intercellular calcium signals throughout embryonic development have been characterised. This review summarises technical approaches to measure calcium signals in developing embryonic and larval zebrafish, and includes recent developments that will facilitate the study of calcium signalling in vivo. The application of calcium imaging techniques to investigate the action of this messenger during embryogenesis in intact zebrafish is illustrated by discussion of their contribution to our understanding of neuronal development in vivo.  相似文献   

11.
Zebrafish and medaka have become popular models for studying skeletal development because of high fecundity, shorter generation period, and transparency of fish embryo. The first step to study skeletal development is visualizing bone and cartilage. Live animal staining with fluorescent calcein have several advantages over the standard skeletal staining protocol by using alizarin red and alcian blue for bone and cartilage. However, there is no detailed study examining skeletal development of live marine fish larvae by calcein staining. Here we applied calcein staining to examine skeletal development in red sea bream larvae. In addition, green fluorescent protein (GFP) reporter zebrafish was employed to trace lineage analysis of intervertebral disk cells in live fish larvae. Calcein staining of red sea bream larvae successfully visualized development of craniofacial skeletons as well as urinary calculus. Histochemical detection of alkaline phosphatase (ALP) activity revealed that abnormal segmentation of notochord induced by RA during vertebral development in zebrafish. Immunohistochemistry clearly revealed that GFP‐positive cells in intervertebral space was nucleus polposus like cell in twhh‐GFP transgenic zebrafish. It was demonstrated usefulness of calcein and ALP staining and twhh‐GFP transgenic zebrafish for studying skeletal development in live fish larvae.  相似文献   

12.
Calcium signaling is important for multiple events during embryonic development. However, roles of calcium influx during embryogenesis have not been fully understood since routes of calcium influx are often redundant. To define roles of voltage-gated calcium channel (Cav) during embryogenesis, we have isolated an ascidian Cav beta subunit gene (TuCavbeta) and performed gene knockdown using the morpholino antisense oligonucleotide (MO). The suppression of Cav activity by TuCavbetaMO remarkably perturbed gastrulation and tail elongation. Further, larvae with normal morphology also failed to exhibit motility. Phalloidin-staining showed that arrangement of myofibrils was uncoordinated in muscle cells of TuCavbetaMO-injected larvae with normal tail. To further understand the roles of Cav activity in myofibrillogenesis, we tested pharmacological inhibitions with ryanodine, curare, and N-benzyl-p-toluensulphonamide (BTS). The treatment with ryanodine, an intracellular calcium release blocker, did not significantly affect the motility and establishment of the myofibril orientation. However, treatment with curare, an acetylcholine receptor blocker, and BTS, an actomyosin ATPase specific inhibitor, led to abnormal motility and irregular orientation of myofibrils that was similar to those of TuCavbetaMO-injected larvae. Our results suggest that contractile activation regulated by voltage-dependent calcium influx but not by intracellular calcium release is required for proper arrangement of myofibrils.  相似文献   

13.
Injections of horseradish peroxidase (HRP) were made into the ipsilateral temporal muscle and contralateral masseter muscle of 10 cats in order to identify and characterize neurons in the nucleus of the mesencephalic root of the trigeminal nerve that innervate muscle receptors in the orofacial periphery. Neurons labelled by HRP injections and unlabelled cells from 5 control cats were measured with a computer-based image analyzer, and their position was mapped on a stereotaxic graph. Cells that innervate the masseter and temporal muscles were identified throughout the rostrocaudal extent of the nucleus. There was no indication of a somatotopic pattern nor of a specific segregation within the nucleus for cells innervating muscle receptors. The nucleus contained small, rounded unipolar neurons located primarily in the dorsal border of the periaqueductal gray (PAG) matter in the rostral part of the nucleus and larger oval unipolar neurons which were scattered throughout the nucleus, but were predominant in the pontine portion of the nucleus. HRP injections labelled both large and small cells, as well as occasional multipolar cells. The last-mentioned tended to be located in the lateral margins of the PAG. The mean geometric values obtained for the control group were: area 552.7 microns2 perimeter 110.3 microns; maximum diameter 36.0 microns. and diameter of an equivalent circle 26.1 microns. The mean values of the labelled neurons were: area 606.6 microns2; perimeter 100.1 microns; maximum diameter 36.0 microns, and diameter of an equivalent circle 27.2 microns.  相似文献   

14.
Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements and posterior migration of hindbrain neurons. Here, we have used positional cloning to demonstrate that trilobite mutations disrupt the transmembrane protein Strabismus (Stbm)/Van Gogh (Vang), previously associated with planar cell polarity (PCP) in Drosophila melanogaster, and PCP and canonical Wnt/beta-catenin signalling in vertebrates. Our genetic and molecular analyses argue that during gastrulation, trilobite interacts with the PCP pathway without affecting canonical Wnt signalling. Furthermore, trilobite may regulate neuronal migration independently of PCP molecules. We show that trilobite mediates polarization of distinct movement behaviours. During gastrulation convergence and extension movements, trilobite regulates mediolateral cell polarity underlying effective intercalation and directed dorsal migration at increasing velocities. In the hindbrain, trilobite controls effective migration of branchiomotor neurons towards posterior rhombomeres. Mosaic analyses show trilobite functions cell-autonomously and non-autonomously in gastrulae and the hindbrain. We propose Trilobite/Stbm mediates cellular interactions that confer directionality on distinct movements during vertebrate embryogenesis.  相似文献   

15.
The aim of this study was to evaluate the potential of a compound diet as a live prey substitute for feeding European sea bass larvae ( Dicentrarchus labrax L.). The effect of a commercial diet (Nippai ML feed) and live prey ( Artemia nauplii) on tryptic enzyme activity, protein content, growth (standard length) and survival rates of sea bass larvae were tested during a 27-day rearing experiment. Sea bass larvae were divided into two groups. The live food group (control group) was fed exclusively on newly hatched Artemia nauplii (Inve AF grade), the test group was fed exclusively with the compound diet from day 15 onwards. As trypsin has been demonstrated to be a useful indicator for evaluating digestibility of food and the nutritional condition of fish larvae, individual tryptic enzyme activity was determined in both feeding groups. Larvae older than 14 days after hatching and fed on live food showed a significantly higher tryptic enzyme activity than larvae fed the compound diet. A similar relationship between tryptic activity and standard length in both test groups was detected only in small larvae (standard length < 7 mm). The usefulness of proteolytic enzyme activity measurements in larval fish research, as well as its use in aquaculture nutrition research, was confirmed. Protein content, increase in length and survival rates of the sea bass larvae were additionally determined in order to evaluate an influence on the diet. The protein content of larvae fed the Artemia nauplii was higher and the growth of larvae fed the compound diet was reduced. Larval mortality was not affected by the diet given.  相似文献   

16.
The zebrafish hi472 mutation is caused by a retroviral insertion into the vesicular integral protein-like gene, or zVIPL, a poorly studied lectin implicated in endoplasmic reticulum (ER)-Golgi trafficking. A mutation in the shorter isoform of zVIPL (zVIPL-s) results in a reduction of mechanosensitivity and consequent loss of escape behavior. Here we show that motoneurons and hindbrain reticulospinal neurons, which normally integrate mechanosensory inputs, failed to fire in response to tactile stimuli in hi472 larvae, suggesting a perturbation in sensory function. The hi472 mutant larvae in fact suffered from a severe loss of functional neuromasts of the lateral line mechanosensory system, a reduction of zVIPL labeling in support cells, and a reduction or even a complete loss of hair cells in neuromasts. The Delta-Notch signaling pathway is implicated in cellular differentiation of neuromasts, and we observed an increase in Notch expression in neuromasts of hi472 mutant larvae. Treatment of hi472 mutant larvae with DAPT, an inhibitor of Notch signaling, or overexpression of the Notch ligand deltaB in hi472 mutant blastocysts produced partial rescue of the morphological defects and of the startle response behavior. We conclude that zVIPL-s is a necessary component of Delta-Notch signaling during neuromast development in the lateral line mechanosensory system.  相似文献   

17.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

18.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.  相似文献   

19.
Particle-mediated ballistic delivery of fluorescent dyes has been recently used to label neuronal populations in a rapid and efficient fashion. Here we describe detailed protocols for this technique as well as recent improvements in its implementation. This technique allows rapid labeling of entire neurons in a Golgi-like manner after membranes of individual neurons are contacted by particles coated with lipophilic dyes. Neurons can be labeled by dyes of different colors at controlled densities to facilitate the study of structural interactions between cells. Furthermore, in conjunction with other histochemical labeling methods, the technique can be used to study changes in neuronal structures associated with pathologic processes in animal models or postmortem human brain. In addition to lipophilic dyes, water-soluble molecules such as calcium indicators can also be delivered efficiently with this technique. The method of ballistic delivery of indicators thus provides new avenues to probe the structure and function of the nervous system.  相似文献   

20.
Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号