首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse blastocyst expresses a 240,000-mol-wt polypeptide that cross-reacts with antibody to avian erythrocyte alpha-spectrin. Immunofluorescence localization showed striking changes in the distribution of the putative embryonic spectrin during preimplantation and early postimplantation development. There was no detectable spectrin in either the unfertilized or fertilized egg. The first positive reaction was observed in the early 2-cell stage when a bright band of fluorescence delimited the region of cell-cell contact. The blastomeres subsequently developed continuous cortical layers of spectrin and this distribution was maintained throughout the cleavage stages. A significant reduction in fluorescence intensity occurred before implantation in the apical region of the mural trophoblast and the trophoblast outgrowths developed linear arrays of spectrin spots that were oriented in the direction of spreading. In contrast to the alterations that take place in the periphery of the embryo, spectrin was consistently present in the cortical cytoplasm underlying regions of contact between the blastomeres and between cells of the inner cell mass. The results suggest a possible role for spectrin in cell-cell interactions during early development.  相似文献   

2.
Differentiation in the early mouse embryo begins at the 8-cell stage when the blastomeres flatten against each other by active spreading movements and surface and cytoplasmic elements become concentrated in the apical (uncontacted) region of the cells. A ring of cortical myosin marks the demarcation between the contacted and the uncontacted cellular domains. The organization of the cortical contractile apparatus in the blastomeres bears a formal resemblance to that of other cells that are engaged in similar motile activities. It has been proposed that a flow of cortical filaments could provide the motor that powers these movements. The applicability of such a cortical flow model to the early embryo and the implications for cell flattening and cell polarization are discussed in this review.  相似文献   

3.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   

4.
Spectrin in mouse gametogenesis and embryogenesis   总被引:1,自引:0,他引:1  
Antibodies to nonerythroid alpha spectrin (p 230) were used to study the distribution of this polypeptide in mouse germ cells, zygote, and early embryonic cells. In the primordial germ cells, fetal oocytes, and spermatogonia, spectrin was found predominantly in the form of a narrow condensed subplasmalemmal band, as in all other somatic cells. During spermatogenesis, spectrin is condensed into the supraacrosomal cytoplasm and is lost during the reduction of the cytoplasm of the maturing spermatozoa. The postnatal growth of the oocyte is accompanied by a loss of the dense cortical band of spectrin and its redistribution in the cytoplasm. Zygotes also contain granular dispersed spectrin. Cortical condensation of spectrin filaments gradually reappears in the blastomeres at the two-cell stage and in the secondary polar body. Cortically condensed filaments represent thereafter the predominant form of spectrin in all preimplantation stage embryonic cells. Trophoblastic cells spreading out from explanted blastocysts are devoid of the cortically condensed spectrin and contain, instead, spectrin arrays in the cytoplasm. Trophoblastic cells, which surround the implanted embryo in vivo, also show diffuse cytoplasmic spectrin which subsequently undergoes subplasmalemmal condensation. These data show that spectrin is present in all stages of gametogenesis and embryogenesis, except in mature spermatozoa; and that it undergoes cytoplasmic redistribution during morphogenesis.  相似文献   

5.
AlphaII-spectrin is a major cortical cytoskeletal protein contributing to membrane organization and integrity. The Ca2+-activated binding of calmodulin to an unstructured insert in the 11th repeat unit of alphaII-spectrin enhances the susceptibility of spectrin to calpain cleavage but abolishes its sensitivity to several caspases and to at least one bacterially derived pathologic protease. Other regulatory inputs including phosphorylation by c-Src also modulate the proteolytic susceptibility of alphaII-spectrin. These pathways, acting through spectrin, appear to control membrane plasticity and integrity in several cell types. To provide a structural basis for understanding these crucial biological events, we have solved the crystal structure of a complex between bovine calmodulin and the calmodulin-binding domain of human alphaII-spectrin (Protein Data Bank ID code 2FOT). The structure revealed that the entire calmodulin-spectrin-binding interface is hydrophobic in nature. The spectrin domain is also unique in folding into an amphiphilic helix once positioned within the calmodulin-binding groove. The structure of this complex provides insight into the mechanisms by which calmodulin, calpain, caspase, and tyrosine phosphorylation act on spectrin to regulate essential cellular processes.  相似文献   

6.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

7.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

8.
Myosin rings and spreading in mouse blastomeres   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1145-1150
The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced changes in myosin distribution that resembled those which occur during cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was associated with the development of stable cell-substrate attachments. In addition, a ring of myosin was formed along the edge of the cells' contact to the substrate. The presence of such a ring may be related to the potential for subsequent cell spreading. A myosin ring was also identified in the apical junctional region of the outer morula cells where it similarly separated the cell periphery into contacted and free peripheral domains. Following these changes in myosin organization the embryos spread on the substrate by extension of lamellipodia. These movements were coupled to the dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence of changes in the pattern of myosin distribution suggests that contact regulation of myosin organization plays an important role in controlling the spreading behavior of blastomeres and perhaps more generally in the organization of cells into epithelia.  相似文献   

9.
Fodrin (brain spectrin) binds calmodulin and is susceptible to proteolysis by calcium-dependent protease I (CDP-I, calcium-activated neutral protease I, or calpain I). Both events involve the central region of the alpha-fodrin subunit, and calmodulin binding enhances the sensitivity of fodrin to CDP-I mediated proteolysis. Fragments of fodrin, generated chemically or proteolytically, which retain calmodulin binding activity have been identified and analyzed by two-dimensional peptide mapping and by direct protein sequencing. Both CDP-I and calmodulin interact with the terminal portion of the eleventh repetitive unit in fodrin, which is at the center of the molecule. CDP-I cleavage occurs between Tyr104 and Gly105 and preserves the calmodulin binding activity of the carboxyl-terminal fragment. In contrast, chymotryptic cleavage at Trp120 reduces the ability of this fragment to bind calmodulin, and tryptic cleavage beyond Trp120 completely eliminates calmodulin binding activity. It is concluded that Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala- Thr- Phe-Asn-Ser-Ile-Lys, a 24-residue peptide which bridges repeats 11 and 12 of brain alpha spectrin contains the high affinity calmodulin binding domain.  相似文献   

10.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

11.
Is spectrin a calmodulin-binding protein?   总被引:1,自引:0,他引:1  
The binding of calmodulin to spectrin from human erythrocytes has been studied by affinity chromatography on sepharose-calmodulin column. The alpha and beta spectrin chains, dissociated in 6-7 M urea, both bound to the sepharose-calmodulin column, but with different affinities. Both chains were eluted together by EGTA. Binding sites for calmodulin are, therefore, present in both alpha and beta chains. However, intact purified spectrin dimers did not bind to the sepharose-calmodulin column, which renders a physiological role of calmodulin-binding to spectrin rather unlikely.  相似文献   

12.
Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization.  相似文献   

13.
Erythrocyte adducin is a membrane skeletal protein that binds to calmodulin, is a major substrate for protein kinase C, and associates preferentially with spectrin-actin complexes. Erythrocyte adducin also promotes association of spectrin with actin, and this activity is inhibited by calmodulin. This study describes the isolation and characterization of a brain peripheral membrane protein closely related to erythrocyte adducin. Brain and erythrocyte adducin have at least 50% antigenic sites in common, each contains a protease-resistant core of Mr = 48,000-48,500, and both proteins are comprised of two partially homologous polypeptides of Mr = 103,000 and 97,000 (erythrocytes) and Mr = 104,000 and 107,000-110,000 (brain). Brain and erythrocyte adducin associate preferentially with spectrin-actin complexes as compared to spectrin or actin alone, and both proteins also promote binding of spectrin to actin. Brain adducin binds calmodulin in a calcium-dependent manner, although the Kd of 1.3 microM is weaker by 5-6-fold than the Kd of erythrocyte adducin for calmodulin. Brain adducin is a substrate for protein kinase C in vitro and can accept up to 2 mol of phosphate/mol of protein. Adducin provides a potential mechanism in cells for mediating site-directed assembly of additional spectrin molecules and possibly other proteins at the spectrin-actin junction. Brain tissue contains 12 pmol of adducin/mg of membrane protein, which is the most of any tissue examined other than erythrocytes, which have 50 pmol/mg. The presence of high amounts of adducin in brain suggests some role for this protein in specialized activities of nerve cells.  相似文献   

14.
A spectrin-dependent ATPase of the human erythrocyte membrane   总被引:3,自引:0,他引:3  
Removal of spectrin from erythrocyte membranes results in the simultaneous loss of a calcium-stimulated, magnesium-dependent ATPase with an apparent KD for Ca2+ of 1 microM. This ATPase activity with high Ca2+ affinity is specifically reconstituted by addition of purified spectrin to spectrin-depleted membranes, and the reconstituted activity is directly proportional to the amount of spectrin that is reassociated with the membranes. Spectrin binding and activation of the high Ca2+ affinity Mg2+-ATPase are proportionally inhibited by thermal denaturation, trypsin digestion, or treatment of the membranes with thiol-reactive reagents. Binding of calmodulin to the Ca2+ pump ATPase requires that calmodulin contains bound ca2+. By contrast, spectrin binding to the erythrocyte membrane is Ca2+-independent. Direct assay of calmodulin is purified spectrin and absence of chlorpromazine inhibition of reconstitution demonstrate that activation of the high Ca2+ affinity ATPase resulting from spectrin binding is not a result of contamination of spectrin by calmodulin. Additional evidence that the spectrin-activated ATPase is an entity separate and distinct from the Ca2+ pump is provided by other characteristics of the activation phenomenon. It is suggested that spectrin constitutes part of an ATPase which may function as a component of the "cytoskeleton" controlling erythrocyte shape and membrane flexibility.  相似文献   

15.
N R Burns  W B Gratzer 《Biochemistry》1985,24(12):3070-3074
The binding of calmodulin to red cell membrane cytoskeletons and to purified spectrin from red cells and bovine brain spectrin (fodrin) has been examined. Under physiological solvent conditions binding can be measured by ultracentrifugal pelleting assays. The membrane cytoskeletons contained a single class of binding sites, with a concentration similar to that of spectrin dimers and an association constant of 1.5 X 10(5) M-1. Binding is calcium dependent and is suppressed by the calmodulin inhibitor trifluoperazine. The binding showed a marked dependence on ionic strength, with a maximum at 0.05 M, and a steep dependence on pH, with a maximum at pH 6.5. It was unaffected by 5 mM magnesium. An azidocalmodulin derivative, under the conditions of our experiments, did not label the spectrin-containing complex, although it could be used to demonstrate binding to fodrin. Binding of calmodulin to spectrin tetramers and fodrin in solution could be demonstrated by a pelleting assay after addition of F-actin. Calculations (which are necessarily rough) suggest that at the free calcium concentration prevailing in a normal red cell about 1 in 20 of the calmodulin binding sites in spectrin will be occupied; this proportion will rise rapidly with increasing intracellular calcium. To determine whether inhibition of calmodulin binding to red cell proteins disturbs the control of cell shape, as has been suggested, calcium ions were removed from the cell by addition of an ionophore and of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to the external medium. This did not affect the discoid shape. Trifluoperazine still induced stomatocytosis, exactly as in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The binding of the isolated alpha-subunit of human erythrocyte spectrin to calmodulin is demonstrated by partitioning in aqueous two-phase systems. The affinity of the alpha-subunit for calmodulin is slightly higher than that of the spectrin dimer, whereas the beta-subunit interacts only very weakly. The binding is in all cases calcium-dependent and is abolished on addition of chlorpromazine. At an ionic strength close to physiological conditions, about 1 microM free calcium is required to induce maximum binding of calmodulin to spectrin dimer.  相似文献   

17.
Structural and functional polarity of starfish blastomeres   总被引:3,自引:0,他引:3  
The cortex of the blastomeres of Asterina pectinifera are structurally polarized so that some kinds of granules in the cortex, which can be stained vitally with Nile blue (Nile blue-positive granules, NBGs), and microvilli were distributed mainly in the apical region. The blastomeres always faced the adjoining blastomeres and blastocoel with the NBG-free, smooth region during embryogenesis. To confirm whether such blastomeres are functionally polarized, we rotated one of the blastomeres in the 2-cell-stage embryo so that it faced the other with the NBG-containing region. As a result, all embryos developed into twin or partitioned blastulae. This shows that the blastomeres are functionally polarized and have to orient the basal cortex toward the inner side of the embryo in order to be integrated into a blastula together with the others. The cortical polarity was formed and maintained even in blastomeres of dissociated embryos. In such blastomeres the cleavage furrows were formed along the axis of polarity. When the blastomeres began to adhere closely to each other at the 256-cell stage, only the NBG-free (basal) region acquired adhesiveness. These facts make it possible to infer why the correct apicobasal orientation of blastomeres is necessary for embryonic integration, without considering intercellular communication during the cleavage stage.  相似文献   

18.
A recent study from our laboratory on the sea urchin egg suggested that spectrin was not solely restricted to the plasma membrane, but instead had a more widespread distribution on the surface of a variety of membranous inclusions. (E. M. Bonder et al., 1989, Dev. Biol. 134, 327-341). In this report we extend our initial findings and provide experimental and ultrastructural evidence for the presence of spectrin on three distinct classes of cytoplasmic vesicles. Immunoblot analysis of membrane fractions prepared from egg homogenates establishes that spectrin coisolates with vesicle-enriched fractions, while indirect immunofluorescence microscopy on cryosections of centrifugally stratified eggs demonstrates that spectrin specifically associates with cortical granules, acidic vesicles, and yolk platelets in vivo. Immunogold ultrastructural localization of spectrin on cortices isolated from eggs and early embryos details the striking distribution of spectrin on the cytoplasmic surface of the plasma membrane and the membranes of cortical granules, acidic vesicles, and yolk platelets, while quantitative studies show that relatively equivalent amounts of spectrin are present on the different membrane surfaces both before and after fertilization. These data, in combination with the localization of numerous spectrin crosslinks between actin filaments in surface microvilli, suggest that spectrin plays a pivotal role in structuring the cortical membrane-cytoskeletal complex of the egg and the embryo.  相似文献   

19.
《The Journal of cell biology》1987,105(6):2837-2845
Adducin is an erythrocyte membrane skeletal phosphoprotein comprised of two related subunits of 105,000 and 100,000 Mr. These peptides form a functional heterodimer, and the smaller of the two binds calmodulin in a calcium-dependent fashion. Although this protein has been physicochemically characterized, its function remains unknown. We have examined the interaction of human adducin with actin and with human erythrocyte spectrin using sedimentation, electrophoretic, and morphologic techniques. Purified adducin binds actin at physiologic ionic strength and bundles it into arrays of laterally arranged filaments, the adducin forming cross-bridges between the filaments at 35.2 /- 3.8 (2 SD) nm intervals. The stoichiometry of high affinity adducin binding to actin at saturation is 1:7, corresponding to a dimer of adducin for every actin helical unit. Adducin also promotes the binding of spectrin to actin independently of protein 4.1. At saturation, each adducin promotes the association of one spectrin heterodimer. The formation of this ternary spectrin-actin-adducin complex is independent of the assembly path, and the complex exists in a readily reversible equilibrium with the free components. The binding of adducin to actin and its ability to stimulate spectrin-actin binding is down-regulated by calmodulin in a calcium-dependent fashion. These results thus identify a putative role for adducin, and define a calcium- and calmodulin-dependent mechanism whereby higher states of actin association and its interaction with spectrin in the erythrocyte may be controlled.  相似文献   

20.
The purpose of the present investigation was to test experimentally the possibility that division mechanism establishment at the equator of sand dollar eggs may be a consequence of cortical tension gradients between the equator and the poles. Cytochalasin has been shown to decrease tension at the sea urchin egg surface. The concave ends of cytochalasin D-containing agarose cylinders were held against regions of the surface of Echinarachnius parma blastomeres and enucleated fertilized egg fragments. The ability to interfere with normal furrowing activity was used as a biological indicator of the effectiveness of cytochalasin. When agarose containing 2 microg/mL cytochalasin contacted the equatorial region of the blastomeres resulting from the first cleavage, or the equatorial surfaces of nucleated fertilized egg halves, furrowing was blocked, stalled or delayed, indicating that the concentration of cytochalasin was effective. When the same concentration of cytochalasin was applied to the poles, the cells and nucleated fertilized egg fragments divided in the same way as the controls, indicating that the effectiveness of the cytochalasin did not spread from the poles to the equator and that bisection did not interfere with the division of nucleated fertilized egg fragments. When the same concentration of cytochalasin was applied to diametrically opposed surfaces of enucleated, spherical egg fragments, there was no evidence of furrowing activity between the areas that contacted the cytochalasin or in any other part of the surface. Because of the tension-reducing effect of cytochalasin, a tension gradient existed between the regions affected and unaffected by cytochalasin. The results strongly suggest that establishment of the division mechanism by simple gradients of tension at the surface is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号