首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

2.
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.  相似文献   

3.
Folding of tendamistat is a rapid two-state process for the majority of the unfolded molecules. In fluorescence-monitored refolding kinetics about 8% of the unfolded molecules fold slowly (lambda=0.083s(-1)), limited by peptidyl-prolyl cis-trans isomerization. This is significantly less than expected from the presence of three trans prolyl-peptide bonds in the native state. In interrupted refolding experiments we detected an additional very slow folding reaction (lambda=0.008s(-1) at pH 2) with an amplitude of about 12%. This reaction is caused by the interconversion of a highly structured intermediate to native tendamistat. The intermediate has essentially native spectroscopic properties and about 2% of it remain populated in equilibrium after folding is complete. Catalysis by human cyclophilin 18 identifies this very slow reaction as a prolyl isomerization reaction. This shows that prolyl-isomerases are able to efficiently catalyze native state isomerization reactions, which allows them to influence biologically important regulatory conformational transitions. Folding kinetics of the proline variants P7A, P9A, P50A and P7A/P9A show that the very slow reaction is due to isomerization of the Glu6-Pro7 and Ala8-Pro9 peptide bonds, which are located in a region that makes strong backbone and side-chain interactions to both beta-sheets. In the P50A variant the very slow isomerization reaction is still present but native state heterogeneity is not observed any more, indicating a long-range destabilizing effect on the alternative native state relative to N. These results enable us to include all prolyl and non-prolyl peptide bond isomerization reactions in the folding mechanism of tendamistat and to characterize the kinetic mechanism and the energetics of a native-state prolyl isomerization reaction.  相似文献   

4.
Unfolding and refolding kinetics of human FKBP12 C22A were monitored by fluorescence emission over a wide range of urea concentration in the presence and absence of protecting osmolytes glycerol, proline, sarcosine and trimethylamine-N-oxide (TMAO). Unfolding is well described by a mono-exponential process, while refolding required a minimum of two exponentials for an adequate fit throughout the urea concentration range considered. The bi-exponential behavior resulted from complex coupling between protein folding, and prolyl isomerization in the denatured state in which the urea-dependent rate constant for folding was greater than, equal to, and less than the rate constants for prolyl isomerization within the urea concentration range of zero to five molar. Amplitudes and the observed folding and unfolding rate constants were fitted to a reversible three-state model composed of two sequential steps involving the native state and a folding-competent denatured species thermodynamically linked to a folding-incompetent denatured species. Excellent agreement between thermodynamic parameters for FKBP12 C22A folding calculated from the kinetic parameters and those obtained directly from equilibrium denaturation assays provides strong support for the applicability of the mechanism, and provides evidence that FKBP12 C22A folding/unfolding is two-state, with prolyl isomer heterogeneity in the denatured ensemble. Despite the chemical diversity of the protecting osmolytes, they all exhibit the same kinetic behavior of increasing the rate constant of folding and decreasing the rate constant for unfolding. Osmolyte effects on folding/unfolding kinetics are readily explained in terms of principles established in understanding osmolyte effects on protein stability. These principles involve the osmophobic effect, which raises the Gibbs energy of the denatured state due to exposure of peptide backbone, thereby increasing the folding rate. This effect also plays a key role in decreasing the unfolding rate when, as is often the case, the activated complex exposes more backbone than is exposed in the native state.  相似文献   

5.
Suggestive but not decisive evidence indicates that in vivo peptide chain folding is completed in a time not much longer than that required for covalent peptide synthesis. Extrapolation of model peptide rates of the cistrans prolyl isomerization leads to the prediction tht protein folding should be much slower than the apparent in vivo rates. On the assumption that rapid protein folding in vivo is the rule, three routes are suggested by which a protein undergoing biosynthesis can avoid a strongly slowed folding rate: (1) by a peptide chain-elongation process that adds only trans peptide bonds, follwed by a rapid folding process that incorporates them into a three-dimensional structure, raising the energy barrier to isomerization; (2) by folding to produce three dimensional structures that position prolyl residues largely in chain turns on the protein surface, where the residue may be either cis or trans without large effects on the protein structure and function; (3) prolyl cistrans isomerization may be speeded by the formation of peptide loops.  相似文献   

6.
The protein folding process is often in vitro rate‐limited by slow cis‐trans proline isomerization steps. Importantly, the rate of this process in vivo is accelerated by prolyl isomerases (PPIases). The archetypal PPIase is the human cyclophilin 18 (Cyp18 or CypA), and Arg 55 has been demonstrated to play a crucial role when studying short peptide substrates in the catalytic action of Cyp18 by stabilizing the transition state of isomerization. However, in this study we show that a R55A mutant of Cyp18 is as efficient as the wild type to accelerate the refolding reaction of human carbonic anhydrase II (HCA II). Thus, it is evident that the active‐site located Arg 55 is not required for catalysis of the rate‐limiting prolyl cis‐trans isomerization steps during the folding of a protein substrate as HCA II. Nevertheless, catalysis of cis‐trans proline isomerization in HCA II occurs in the active‐site of Cyp18, since binding of the inhibitor cyclosporin A abolishes rate acceleration of the refolding reaction. Obviously, the catalytic mechanisms of Cyp18 can differ when acting upon a simple model peptide, four residues long, with easily accessible Pro residues compared with a large protein molecule undergoing folding with partly or completely buried Pro residues. In the latter case, the isomerization kinetics are significantly slower and simpler mechanistic factors such as desolvation and/or strain might operate during folding‐assisted catalysis, since binding to the hydrophobic active site is still a prerequisite for catalysis.  相似文献   

7.
The kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli involves four parallel channels whose inter-conversions are controlled by three cis/trans prolyl isomerization reactions (tau(1), tau(2) and tau(3)). A previous mutational analysis of all 19 proline positions, including the unique cis Asp27-Pro28 peptide bond, revealed that the G(3)P28G, P78A or P96A mutations selectively eliminated the fast, tau(1) (ten seconds), folding phase, while the P217M and P261A mutations eliminated the medium, tau(2) (40 seconds) and the slow, tau(3) ( approximately 300 seconds) folding phases, respectively. To further elucidate the role of these proline residues and to simplify the folding mechanism, a series of double and triple mutants were constructed at these critical positions, and comprehensive kinetic and thermodynamic experiments were performed. Although it was not possible to construct a stable system that was free of proline isomerization constraints, a double mutant variant, G(3)P28G/P217M, in which the refolding of more than 90% of the unfolded protein is not limited by proline isomerization reactions was identified. Further, long-range interactions between several of these residues appear to be a crucial part of the cooperative network of structure that stabilizes the TIM barrel motif for alphaTS.  相似文献   

8.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.  相似文献   

9.
pH dependence of folding of iso-2-cytochrome c   总被引:4,自引:0,他引:4  
B T Nall  J J Osterhout  L Ramdas 《Biochemistry》1988,27(19):7310-7314
Starting from a standard unfolded state (3.0 M guanidine hydrochloride, pH 7.2), the kinetics of refolding of iso-2-cytochrome c have been investigated as a function of final pH between pH 3 and pH 10. Absorbance in the ultraviolet and visible spectral regions and tryptophan fluorescence are used to monitor folding. Over most of the pH range, fast and slow folding phases are detected by both fluorescence and absorbance probes. Near neutral pH, the rate of fast folding appears to be the same when monitored by absorbance and fluorescence probes. At higher and lower pH, there are two fast folding reactions, with absorbance-detected fast folding occurring in a slightly faster time range than fluorescence-detected fast folding. The rates of both fast folding reactions pass through broad minima near neutral pH, indicating involvement of ionizable groups in rate-limiting steps. The rates of slow folding also depend on the final pH. At acid pH, there appears to be a single slow folding phase for both fluorescence and absorbance probes. At neutral pH, the absorbance-detected and fluorescence-detected slow folding phases separate into distinct kinetic processes which differ in rate and relative amplitude. At high pH, absorbance-detected slow folding is no longer observed, while fluorescence-detected slow folding is decreased in amplitude. In contrast, the equilibrium and kinetic properties of proline imide bond isomerization, believed to be involved in the slow folding reactions, are largely independent of pH. The results suggest that the pH dependence of slow folding involves coupling of pH-sensitive structure to proline imide bond isomerization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The simplest naturally occurring model system for studying immunoglobulin folding and assembly is the non-covalent homodimer formed by the C-terminal domains (CH3) of the heavy chains of IgG. Here, we describe the structure of recombinant CH3 dimer as determined by X-ray crystallography and an analysis of the folding pathway of this protein.Under conditions where prolyl isomerization does not contribute to the folding kinetics, formation of the beta-sandwich structure is the rate-limiting step. beta-Sheet formation of CH3 is a slow process, even compared to other antibody domains, while the subsequent association of the folded monomers is fast. After long-time denaturation, the majority of the unfolded CH3 molecules reaches the native state in two serial reactions, involving the re-isomerization of the Pro35-peptide bond to the cis configuration. The species with the wrong isomer accumulate as a monomeric intermediate. Importantly, the isomerization to the correct cis configuration is the prerequisite for dimerization of the CH3 domain. In contrast, in the Fab fragment of the same antibody, prolyl isomerization occurs after dimerization demonstrating that within one protein, comprised of highly homologous domains, both the kinetics of beta-sandwich formation and the stage at which prolyl isomerization occurs during the folding process can be completely different.  相似文献   

11.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   

12.
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.  相似文献   

13.
β2-Microglobulin (β2-m), a protein responsible for dialysis-related amyloidosis, adopts a typical immunoglobulin domain fold with the N-terminal peptide bond of Pro32 in a cis isomer. The refolding of β2-m is limited by the slow trans-to-cis isomerization of Pro32, implying that intermediates with a non-native trans-Pro32 isomer are precursors for the formation of amyloid fibrils. To obtain further insight into the Pro-limited folding of β2-m, we studied the Gdn-HCl-dependent unfolding/refolding kinetics using two mutants (W39 and P32V β2-ms) as well as the wild-type β2-m. W39 β2-m is a triple mutant in which both of the authentic Trp residues (Trp60 and Trp95) are replaced by Phe and a buried Trp common to other immunoglobulin domains is introduced at the position of Leu39 (i.e., L39W/W60F/W95F). W39 β2-m exhibits a dramatic quenching of fluorescence upon folding, enabling a detailed analysis of Pro-limited unfolding/refolding. On the other hand, P32V β2-m is a mutant in which Pro32 is replaced by Val, useful for probing the kinetic role of the trans-to-cis isomerization of Pro32. A comparative analysis of the unfolding/refolding kinetics of these mutants including three types of double-jump experiments revealed the prolyl isomerization to be coupled with the conformational transitions, leading to apparently unusual kinetics, particularly for the unfolding. We suggest that careful consideration of the kinetic coupling of unfolding/refolding and prolyl isomerization, which has tended to be neglected in recent studies, is essential for clarifying the mechanism of protein folding and, moreover, its biological significance.  相似文献   

14.
The immunoglobulin C(H)2 domain is a simple model system suitable for the study of the folding of all-beta-proteins. Its structure consists of two beta-sheets forming a greek-key beta-barrel, which is stabilized by an internal disulfide bridge located in the hydrophobic core. Crystal structures of various antibodies suggest that the C(H)2 domains of the two heavy chains interact with their sugar moieties and form a homodimer. Here, we show that the isolated, unglycosylated C(H)2 domain is a monomeric protein. Equilibrium unfolding was a two-state process, and the conformational stability is remarkably low compared to other antibody domains. Folding kinetics of C(H)2 were found to consist of several phases. The reactions could be mapped to three parallel pathways, two of which are generated by prolyl isomerizations in the unfolded state. The slowest folding reaction, which was observed only after long-term denaturation, could be catalyzed by a prolyl isomerase. The majority of the unfolded molecules, however, folded more rapidly, on a time-scale of minutes. Presumably, these molecules also have to undergo prolyl isomerization before reaching the native state. In addition, we detected a small number of fast-folding molecules in which all proline residues appear to be in the correct conformation. On both prolyl isomerization limited pathways, the formation of partly structured intermediates could be observed.  相似文献   

15.
Peptidyl prolyl cis-trans isomerases can enzymatically assist protein folding, but these enzymes exclusively target the peptide bond preceding proline residues. Here we report the identification of the Hsp70 chaperone DnaK as the first member of a novel enzyme class of secondary amide peptide bond cis-trans isomerases (APIases). APIases selectively accelerate the cis-trans isomerization of nonprolyl peptide bonds. Results from independent experiments support the APIase activity of DnaK: (i) exchange crosspeaks between the cis-trans conformers appear in 2D (1)H NMR exchange spectra of oligopeptides (ii) the rate constants for the cis-trans isomerization of various dipeptides increase and (iii) refolding of the RNase T1 P39A variant is catalyzed. The APIase activity shows both regio and stereo selectivity and is stimulated two-fold in the presence of the complete DnaK/GrpE/DnaJ/ATP refolding system. Moreover, known DnaK-binding oligopeptides simultaneously affect the APIase activity of DnaK and the refolding yield of denatured firefly luciferase in the presence of DnaK/GrpE/DnaJ/ATP. These results suggest a new role for the chaperone as a regioselective catalyst for bond rotation in polypeptides.  相似文献   

16.
A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose isomerization reactions can limit folding.  相似文献   

17.
Catalysis of protein folding by cyclophilins from different species.   总被引:21,自引:0,他引:21  
Cyclophilins are a class of ubiquitous proteins with yet unknown function. They were originally discovered as the major binding proteins for the immunosuppressant cyclosporin A. The only known catalytic function of these proteins in vitro is the cis/trans isomerization of Xaa-Pro bonds in oligopeptides. This became clear after the discovery that bovine cyclophilin is identical with porcine prolyl isomerase. This enzyme accelerates slow, proline-limited steps in the refolding of several proteins. Here we demonstrate that the cyclophilins from man, pig, Neurospora crassa, Saccharomyces cerevisiae, and Escherichia coli are all active as prolyl isomerases and as catalysts of protein folding. This evolutionary conservation suggests that catalysis of prolyl peptide bond isomerization may be an important function of the cyclophilins. It could be related with de novo protein folding or be involved in regulatory processes. Catalysis of folding is very efficient in the presence of the high cellular concentrations of prolyl isomerase.  相似文献   

18.
Folding of tendamistat, an inhibitor of alpha-amylase, is a fast two-state process accompanied by two minor slow reactions, which were assigned to prolyl isomerization. In a proline-free variant, 5% of the molecules still fold slowly with a rate constant of 2.5 s(-1). This reaction is caused by a slow equilibrium between two populations of unfolded molecules. The time constant for this equilibration process, its sensitivity to LiCl and its temperature dependence identify it as a cis-trans isomerization of nonprolyl peptide bonds. Although nonprolyl peptide bonds have the cis conformation populating only approximately 0.15% in unfolded proteins, their large number generates a significant fraction of slow-folding molecules. This emphasizes that heterogeneous populations in an unfolded protein can induce complex folding kinetics on various time scales.  相似文献   

19.
Kamen DE  Woody RW 《Biochemistry》2002,41(14):4724-4732
The folding mechanism of pectate lyase C (pelC) involves two slow phases that have been attributed to proline isomerization. To have a more detailed and complete understanding of the folding mechanism, experiments have been carried out to identify the prolyl-peptide bonds responsible for the slow kinetics. Site-directed mutagenesis has been used to mutate each of the prolines in pelC to alanine or valine. It has been determined that isomerization of the Leu219-Pro220 peptide bond is responsible for the slowest folding phase observed. The mutant P220A shows kinetic behavior that is identical to the wild-type protein except that the 46-s phase is eliminated. The Leu219-Pro220 peptide bond is cis in the native enzyme. An analysis of the free energy of unfolding of this mutant indicates that the mutation destabilizes the protein by about 4 kcal/mol. However, it appears that the major refolding pathways are unaltered. Further mutations were carried out in order to assign the peptide bond responsible for the 21-s folding phase in pelC. Mutation of the remaining 11 prolines, which are trans in the native enzyme, resulted in no significant changes in the kinetic folding behavior. The conclusion from these experiments is that the 21-s phase involves isomerization of more than one prolyl-peptide bond with similar activation energies.  相似文献   

20.
Trigger factor is a ribosome-bound folding helper, which, apparently, combines two functions, chaperoning of nascent proteins and catalyzing prolyl isomerization in their folding. Immediate chaperone binding at the ribosome might interfere with rapid protein folding reactions, and we find that trigger factor indeed retards the in vitro folding of a protein with native prolyl isomers. The kinetic analysis of trigger factor binding to a refolding protein reveals that the adverse effects of trigger factor on conformational folding are minimized by rapid binding and release. The complex between trigger factor and a substrate protein is thus very short-lived, and fast-folding proteins can escape efficiently from an accidental interaction with trigger factor. Protein chains with incorrect prolyl isomers cannot complete folding and therefore can rebind for further rounds of catalysis. Unlike DnaK, trigger factor interacts with substrate proteins in a nucleotide-independent binding reaction, which seems to be optimized for high catalytic activity rather than for chaperone function. The synthetic lethality, observed when the genes for both DnaK and trigger factor are disrupted, might result from an indirect linkage. In the absence of trigger factor, folding is retarded and more aggregates form, which can neither be prevented nor disposed of when DnaK is lacking as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号