首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Changes in the mRNA levels during mammalian myogenesis were compared for seven polypeptides of mitochondrial respiration (the mitochondrial DNA-encoded cytochrome oxidase subunit III, ATP synthase subunit 6, NADH dehydrogenase subunits 1 and 2, and 16S ribosomal RNA; the nuclear encoded ATP synthase beta subunit and the adenine nucleotide translocase) and three polypeptides of glycolysis (glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and triose-phosphate isomerase). Progressive changes during the conversion from myoblasts to myotubes were monitored under both atmospheric oxygen (normoxic) and hypoxic environments. Northern analyses revealed coordinate, biphasic, and reciprocal expression of the respiratory and glycolytic mRNAs during myogenesis. In normoxic cells the mitochondrial respiratory enzymes were highest in myoblasts, declined 3- to 5-fold during commitment and exist from the cell cycle, and increased progressively as the myotubes matured. By contrast, the glycolytic enzyme mRNAs rose 3- to 6-fold on commitment and then progressively declined. When partially differentiated myotubes were switched to hypoxic conditions, the glycolytic enzyme mRNAs increased and the respiratory mRNAs declined. Hence, the developmental regulation of muscle bioenergetic metabolism appears to be regulated at the pretranslational level and is modulated by oxygen tension.  相似文献   

2.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

3.
A yeast glyceraldehyde-3-phosphate dehydrogenase gene has been isolated from a collection of Escherichia coli transformants containing randomly sheared segments of yeast genomic DNA. Complementary DNA, synthesized from partially purified glyceraldehyde-3-phosphate dehydrogenase messenger RNA, was used as a hybridization probe for cloning this gene. The isolated hybrid plasmid DNA has been mapped with restriction endonucleases and the location of the glyceraldehyde-3-phosphate dehydrogenase gene within the cloned segment of yeast DNA has been established. There are approximately 4.5 kilobase pairs of DNA sequence flanking either side of the glyceraldehyde-3-phosphate dehydrogenase gene in the cloned segment of yeast DNA. The isolated hybrid plasmid DNA has been used to selectively hybridize glyceraldehyde-3-phosphate dehydrogenase messenger RNA from unfractionated yeast poly(adenylic acid)-containing messenger RNA. The nucleotide sequence of a portion of the isolated hybrid plasmid DNA has been determined. This nucleotide sequence encodes 29 amino acids which are at the COOH terminus of the known amino acid sequence of yeast glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

4.
This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds – first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme – from the oxidation of the sulfhydryl groups of the active site to glycation with sugars – can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This “primary inactivation” of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences – from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways – in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides – β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of “advanced glycation end products” in the already formed aggregates and fibrils of amyloid proteins. In our opinion, the modification of aggregates and fibrils is secondary in nature and does not play an important role in the development of neurodegenerative diseases. The glycation of amyloid proteins with carbonyl compounds can be one of the triggers of their transformation into toxic forms. The possible role of glycation of amyloidogenic proteins in the prevention of their modification by ubiquitin and the SUMO proteins due to a disruption of their degradation is separately considered.  相似文献   

5.
The course of development of mitochondrial activities was studiedin the early stage of germination of Phaseolus mungo seeds.Mitochondrial activities (state 3 oxygen uptake rate, respiratorycontrol, and ADP/O values) increased, while the activities ofglycolytic enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase,and pyruvate kinase) hardly changed, during the early periodof imbibition. The activities of mitochondrial enzymes (malateand succinate dehydrogenases, and cytochrome oxidase) increasedduring the period, but the rates were still low compared withthose of glycolytic enzymes. On the basis of these results,a significant difference in activation patterns between glycolyticand mitochondrial activities is discussed.  相似文献   

6.
7.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

8.
Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that catalyses conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. ATP has been found to have an inhibitory effect on this enzyme. To establish the interaction between the enzyme and ATP, a fluorescence technique was used. Fluorescence quenching in the presence of ATP suggests cooperative binding of ATP to the enzyme (the Hill obtained coefficient equals 2.78). The interaction between glyceraldehyde-3-phosphate dehydrogenase and ATP may control not only glycolysis but other activities of this enzyme, such as binding to the cytoskeleton.  相似文献   

9.
The steady-state reactant levels of triose-phosphate isomerase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system were examined in guinea-pig cardiac muscle. Key glycolytic intermediates, including glyceraldehyde 3-phosphate were directly measured and compared with those of creatine kinase. Non-working Langendorff hearts as well as isolated working hearts were perfused with 5 mM glucose (plus insulin) under normoxia conditions to maintain lactate dehydrogenase near-equilibrium. The cytosolic phosphorylation potential ([ATP]/([ADP].[Pi])) was derived from creatine kinase and the free [NAD+]/([NADH].[H+]) ratio from lactate dehydrogenase. In Langendorff hearts glycolysis was varied from near-zero flux (hyperkalemic cardiac arrest) to higher than normal flux (normal and maximum catecholamine stimulation). The triose-phosphate isomerase was near-equilibrium only in control or potassium-arrested Langendorff hearts as well as in postischemic 'stunned' hearts. However, when glycolytic flux increased due to norepinephrine or due to physiological pressure-volume work the enzyme was displaced from equilibrium. The alternative phosphorylation ratio [ATP]'/([ADP]).[Pi]) was derived from the magnesium-dependent glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system assigning free magnesium different values in the physiological range (0.1-2.0 mM). As predicted, [ATP]/([ADP].[Pi]) and [ATP]'/([ADP]'.[Pi]') were in excellent agreement when glycolysis was virtually halted by hyperkalemic arrest (flux approximately 0.2 mumol C3.min-1.g dry mass-1). However, the equality between the two phosphorylation ratios was not abolished upon resumption of spontaneous beating and also not during adrenergic stimulation (flux approximately 5-14 mumol C3.min-1.g dry mass-1). In contrast, when flux increased due to transition from no-work to physiological pressure-volume work (rate increase from approximately 3 to 11 mumol C3.min-1.g dry mass-1), the two ratios were markedly different indicating disequilibrium of the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase. Only during adrenergic stimulation or postischemic myocardial 'stunning', not due to hydraulic work load per se, glyceraldehyde-3-phosphate levels increased from about 4 microM to greater than or equal to 16 microM. Thus the guinea-pig cardiac glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system can realize the potential for near-equilibrium catalysis at significant flux provided glyceraldehyde-3-phosphate levels rise, e.g., due to 'stunning' or adrenergic hormones.  相似文献   

10.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

11.
The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1–E2–E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation.  相似文献   

12.
The influence of limited oxidation of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and myoglobin by singlet oxygen and by hydroxyl radicals was investigated. The intrinsic fluorescence of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase decreased rapidly during oxidation, indicating a conformational change of the protein molecules. The free energy of isothermal unfolding in urea solutions was increased by singlet oxygen, but decreased by hydroxyl radical attack. The velocity of refolding of the denatured protein after dilution of the denaturant was increased by exposure to either singlet oxygen or hydroxyl radicals, with one exception: the velocity of refolding of myoglobin, oxidized by singlet oxygen, was strongly decreased. Hydroxyl radicals produced covalently crosslinked protein aggregates and some fragmentation, whereas singlet oxygen produced only crosslinked aggregates with glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase. All oxidized proteins were more susceptible to proteolysis by elastase and proteinase K, as compared to the undamaged proteins. Singlet oxygen-induced crosslinked aggregates were degraded very rapidly by elastase. Hydroxyl radical-induced aggregates of glyceraldehyde-3-phosphate dehydrogenase were also degraded very rapidly by this enzyme, but hydroxyl radical-induced aggregates of alcohol dehydrogenase were resistent to enzymatic degradation. The results indicate that limited protein oxidation may have a pronounced influence on several properties of the protein. The effects vary, however, with varying proteins and with the oxidizing species.  相似文献   

13.
Exposure of L929 murine fibroblasts to ozone resulted in K+ leakage and inhibition of several enzymes. Most sensitive to ozone exposure were glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. The activities of another cytosolic enzyme, lactate dehydrogenase, the mitochondrial enzymes glutamate dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and the activity of the lysosomal enzymes acid phosphatase and beta-glucuronidase were, initially, not or only slightly affected. The localization of the lysosomal enzymes did not change during ozone exposure. After prolonged exposure complete deterioration of the cells was observed and all enzyme activities declined. The activity of the enzymes was also monitored during ozone exposure of a sonicated cell suspension and it was shown that all these enzymes are in fact susceptible to ozone. These observations clearly demonstrate that, besides the structure and amino acid composition of an enzyme, the localization in the cell plays an important role in its susceptibility to ozone. The intracellular levels of reduced and oxidized glutathione were affected as well. The ATP content, however, proved to be insensitive to ozone exposure.  相似文献   

14.
The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:1460-1468, 1987). The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase. The steady-state levels of pathway intermediates upon refeeding with lactose after various periods of starvation indicate that the decreased glycolysis is primarily due to diminished glyceraldehyde-3-phosphate dehydrogenase activity. Furthermore, quantification of the control strength exerted by glyceraldehyde-3-phosphate dehydrogenase on the overall activity of the glycolytic pathway shows that this enzyme can be significantly rate limiting in nongrowing cells.  相似文献   

15.
The nearly complete amino acid sequence obtained for murine calcyclin from Ehrlich ascites tumor cells reveals a very strong similarity with the rat and human sequences previously deduced from corresponding cDNA clones. While mouse and rat calcyclins are identical, the human protein shows at three positions a conservative amino acid replacement. Using a mouse calcyclin affinity matrix, two proteins with molecular masses of about 36 kDa have been purified from Ehrlich ascites tumor cells. The interaction between these two proteins and the immobilized calcyclin is strictly Ca2(+)-dependent. Immunological criteria and partial sequence data identify the two calcyclin-binding proteins as the phospholipid-binding protein annexin II (p36) and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. These observations suggest that calcyclin may exert its physiological function by a Ca2(+)-dependent interaction with cellular targets, e.g. annexin II or glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

16.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

17.
The intracellular distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase and the pyruvate kinase isoenzymes type M1 and type M2 within unfertilized hen eggs was studied. Most of glycolytic enzyme activities were found in the yolk fraction; 8-24% of total glycolytic enzyme activities were found in the vitelline membrane fraction. However, the specific activities of these enzymes in the vitelline membrane fraction are 19-72-fold higher (U/mg protein) and 45-178-fold more concentrated (U/g wet weight) than in the yolk fraction. The study of intracellular localization of pyruvate kinase isoenzymes shows that the blastodisc, latebra and vitelline membrane contain only pyruvate kinase type M2, whereas pyruvate kinase types M1 and M2 are found in the egg yolk. The exclusive occurrence of pyruvate kinase type M2 in the blastodisc is consistent with the concept that this isoenzyme is involved in the cell proliferation. The heterogeneous distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase, and the heterogeneous localization of the pyruvate kinase isoenzymes types M1 and M2 indicate that glycolysis is distributed heterogeneously within the unfertilized hen egg cell.  相似文献   

18.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

19.
Mild oxidation of glyceraldehyde-3-phosphate dehydrogenase in the presence of hydrogen peroxide leads to oxidation of some of the active site cysteine residues to sulfenic acid derivatives, resulting in the induction of acylphosphatase activity. The reduced active sites of the enzyme retain the ability to oxidize glyceraldehyde-3-phosphate yielding 1,3-diphosphoglycerate, while the oxidized active sites catalyze irreversible cleavage of 1,3-diphosphoglycerate. It was assumed that the oxidation of glyceraldehyde-3-phosphate dehydrogenase by different physiological oxidants must accelerate glycolysis due to uncoupling of the reactions of oxidation and phosphorylation. It was shown that the addition of hydrogen peroxide to the mixture of glycolytic enzymes or to the muscle extract increased production of lactate, decreasing the yield of ATP. A similar effect was observed in the presence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase catalyzing irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate. A role of glyceraldehyde-3-phosphate dehydrogenase in regulation of glycolysis is discussed.  相似文献   

20.
We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号