首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitive biological measures of river ecosystem quality are needed to assess, maintain or restore ecological conditions of water bodies. Since our understanding of these complex systems is imperfect, decision-making requires recognizing uncertainty. In this study, a new predictive multi-metric index based on fish functional traits was developed to assess French rivers. Information on fish assemblage structure, local environment and human-induced disturbances of 1654 French river sites was compiled. A Bayesian framework was used to predict theoretical metric values in absence of human pressure and to estimate the uncertainty associated with these predictions. The uncertainty associated with the index score gives the confidence associated with the evaluation of site ecological conditions.Among the 228 potential metrics tested, only 11 were retained for the index computation. The final index is independent from natural variability and sensitive to human-induced disturbances. In particular, it is affected by the accumulation of different degradations and specific degradations including hydrological perturbations. Predictive uncertainty is globally lower for IPR+ than for underlying metrics.This new methodology seems appropriate to develop bio-indication tools accounting for uncertainty related to reference condition definition and could be extended to other biological groups and areas. Our results support the use of multi-metric indexes to assess rivers and strengthen the idea that examination of uncertainty could contribute greatly to the improvement of the assessment power of bio-indicators.  相似文献   

2.
3.
《Ecological Indicators》2008,8(3):285-291
Community structure changes with pollution or stress. In the Water Framework Directive, high ecological status through biological parameters is defined as a slight or minor deviation from the reference community, while the good status is defined as a small deviation.To assess the importance of this deviation, and then to measure the degradation of ecological status along a river, an index based on the concept of “ecological distance” between species was created and called ecological distance index (EDI). It was tested on diatom data from a pilot watershed (the Garonne river basin, South-West France).The results show a good correlation between the EDI and the IPS (Indice de Pollusensibilité Spécifique – specific pollusensitivity index – a diatom-based biotic index) ecological ratios, which means first that the EDI is a valuable indicator of ecological status, and that it can account for ecoregional specificities. This index can be applied to any communities (macro-invertebrates, fish, etc.), since: (i) typical reference communities are found for each river type; (ii) species are characterised then ranked by pollution sensitivity values.  相似文献   

4.
Identifying the key determinants and their impacts on water quality and fish community structure is imperative to environmental assessment and ecosystem conservation. The main objectives of this study were to assess the factors driving water quality, fish assemblages, and ecological health in a temperate lotic ecosystem using a long-term (12 years) dataset. The results indicate that sewage treatment plants significantly negatively impact river water quality and are primary pollution sources. Temporal fluctuations showed that the summer monsoon adversely influenced TN and EC due to dilution effects while increasing the COD and TSS in the water. Annual variations and the Mann–Kendall test demonstrated increasing trends in COD, TN:TP ratio, and CHL-a but a decreasing trend of TP with the impoundment. Artificial barriers (weirs) in the river created more favorable algal growth conditions due to increased water residence time. COD and TSS levels in the river were significantly affected by soil erosion. The environmental disturbance measures index indicated that all sites were severely degraded. Fish composition analysis suggested that exotic fish species such as, Lepomis macrochirus and Micropterus salmoides, dominated the community structure and negatively impacted native species after the installation of weirs. Our findings indicate that fish guilds and the IBI model are controlled by nutrient enrichment, organic matter, algal production, and land use/land cover. Water quality governs the biological health of the river. Overall, evaluation of the river's ecological health based on the multi-metric WPI and the IBI revealed that the river has a “poor” to “very poor” ecological status. The outcomes of this study may aid policymakers in managing and restoring the river.  相似文献   

5.
The paper outlines a 2-tier approach for wide-scale biomonitoring programmes. To obtain a high level of standardization, we suggest the use of caged organisms (mussels or fish). An "early warning", highly sensitive, low-cost biomarker is employed in tier 1 (i.e. lysosomal membrane stability (LMS) and survival rate, a marker for highly polluted sites). Tier 2 is used only for animals sampled at sites in which LMS changes are evident and there is no mortality, with a complete battery of biomarkers assessing the levels of pollutant-induced stress syndrome. Possible approaches for integrating biomarker data in a synthetic index are discussed, along with our proposal to use a recently developed Expert System. The latter system allows a correct selection of biomarkers at different levels of biological organisation (molecular/cellular/tissue/organism) taking into account trends in pollutant-induced biomarker changes (increasing, decreasing, bell-shape). A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.  相似文献   

6.
According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on type-specific reference conditions. Moreover to support biological indicators an hydromorphological analysis is also requested for each river type. The rationale for including an habitat assessment in biomonitoring study is that a biological community can be influenced by habitat quality just as water chemistry.In the present work benthic macroinvertebrates were analysed in a specific river type of Central Italy (small-sized streams, volcanic-siliceous), to identify taxa assemblages at the mesohabitat scale and to test how common measures of benthic community used in biomonitoring differ between riffles and pools in order to evaluate if differences may influence water quality classification.Macroinvertebrates were collected in 10 selected streams, covering the whole quality range present in the geographic area from ‘reference sites’ to human-impacted sites, along a pool–riffle sequence following a multihabitat sampling protocol.We compared assemblage of macroinvertebrates found in different mesohabitats using principal component analysis (PCA). Similar site grouping was obtained in riffle, pool and abiotic analysis.The measures of diversity and abundance were used as replicates in ANOVA analysis to test differences between pools and riffles within the groups of sites. There were no significant differences in terms of taxa richness and total abundance.When we compared the abundance of each taxon we found significant differences only in the group of reference sites with 18 taxa (about 25%) that showed a significant habitat preference.Our findings support that macroinvertebrates assemblages reflected primarily the environmental conditions and differences at mesohabitat scale are strongly correlated to hydromorphological condition and are maximized in reference sites. However such differences do not influence the ecological status assessment in this typology.  相似文献   

7.
Many biological early warning systems (BEWS) have been developed in recent years that evaluate the physiological and behavioral responses of whole organisms to water quality. Using a fish ventilatory monitoring system developed at the US Army Centre for Environmental Health Research as an example, we illustrate the operation of a BEWS at a groundwater treatment facility. During a recent 12-month period, the fish ventilatory system was operational for 99% of the time that the treatment facility was on-line. Effluent-exposed fish responded as a group about 2.8% of the time. While some events were due to equipment problems or non-toxic water quality variations, the fish system did indicate effluent anomalies that were subsequently identified and corrected. The fish monitoring BEWS increased treatment facility engineers' awareness of effluent quality and provided an extra measure of assurance to regulators and the public. Many operational and practical considerations for whole organism BEWS are similar to those for cell- or tissue-based biosensors. An effective biomonitoring system may need to integrate the responses of several biological and chemical sensors to achieve desired operational goals. Future development of an 'electronic canary', analogous to the original canary in the coal mine, could draw upon advances in signal processing and communication to establish a network of sensors in a watershed and to provide useful real-time information on water quality.  相似文献   

8.
冯君明  冯一凡  李翅  吕硕  马俊杰 《生态学报》2023,43(16):6798-6809
在黄河流域生态保护和高质量发展战略背景下,加强对黄河滩区生境质量及其驱动机制研究对区域生物多样性保护和生态韧性提升具有重要意义。以黄河滩区沿河城镇为研究区,依据河势特征将其划分为4个河段和14个子研究区,并基于InVEST模型与3类景观格局指数分析论证不同河势特征分界下生境质量与景观格局的时空演变规律。结果表明:(1)生境质量方面,2000-2020年研究区生境质量整体呈下降趋势,各河段生境质量平均值由大到小依次为河口段、弯曲段、游荡段、过渡段;(2)景观格局方面,各河段之间景观破碎度指数波动最小,并随城镇化发展破碎化程度逐渐减弱,连接度与复杂度波动明显,且因河势特征存在差异性变化;(3)生境质量与景观格局相关性方面,多数土地景观格局指数与生境质量显著相关,但关联程度有所下降。相同地类景观格局指数在不同河段内表现出不同甚至反向的互动关系。研究表明,河势特征是黄河滩区生境质量的全局性支撑或限制因素,其作用主要体现为对黄河滩区周边城镇土地空间发展的差异化影响,该影响直接作用于紧邻黄河地带的城镇组团,并间接影响其他区域,在一定程度上左右了城镇发展主向以及土地转化、空间格局的演变规律,最终影响区域生境质量的分布格局。研究结果对黄河滩区重要生态功能区的生境保护与生态系统功能调控具有一定的理论与实践价值。  相似文献   

9.
10.
The European Water Framework Directive prescribes that the development of a river assessment system should be based on an ecological typology taking the biological reference conditions of each river type as a starting point. Aside from this assessment, water managers responsible for river restoration actions also need to know the steering environmental factors to meet these reference conditions for biological communities in each ecological river type. As such, an ecological typology based on biological communities is a necessity for efficient river management. In this study, different clustering techniques including the Sørensen similarity ratio, ordination analysis and self-organizing maps were applied to come to an ecological classification of a river. For this purpose, a series of sites within the Zwalm river basin (Flanders, Belgium) were monitored. These river sites were then characterized in terms of biotic (macroinvertebrates), physical–chemical and habitat variables. The cluster analysis resulted in a series of characteristic biotic communities that are found under certain environmental conditions, natural as well as human-influenced. The use of multiple clustering techniques can be of advantage to draw more straightforward and robust conclusions with regard to the ecological classification of river sites. The application of the clustering techniques on the Zwalm river basin, allowed for distinguishing five mutually isolated clusters, characterized by their natural typology and their pollution status. On the basis of this study, one may conclude that river management could benefit from the use of clustering methods for the interpretation of large quantities of data. Furthermore, the clustering results might enable the development of a cenotypology useful for efficiently steering river restoration and enabling river managers to meet a good ecological status in most of the rivers as set by the European Water Framework Directive.  相似文献   

11.
One of the major objectives of the VALIMAR project is to determine the ecological significance of various fish biomarker studies as indicators of chronic pollution in small streams in southwest Germany. Results of these fish biomarker investigations were compared to information from complementary studies on the meiobenthos, macrobenthos, and fish community studies to assess the ecological significance of these biomarker investigations. The main objective of this study was to provide biological assessments of the biomarker sites on the basis of the macrozoobenthos communities. Since no validated framework for the assessment of the biological integrity existed in Germany, two multimetric approaches were adapted to the whole stream system by investigating benthos and fish communities of 46 sites of varying degrees of human disturbance. Assessment of the communities was conducted in accordance with the European Community Water Framework Directive. Species distribution of benthos depended upon stream type and pollution status of streams. Biological attributes and bioindices of benthos communities, however, did not correlate with typological parameters like stream size or dominant substrate but correlated better with pollution parameters like conductivity or chloride concentration. Using a set of 18 measures, such as portion of sessile individuals, Rheoindex, oxygen availability index, and portion of pool dwellers, the benthos communities were characterized and evaluated. The composition of the fish communities was mainly determined by stream type, pollution and migration barriers. The influence of chemical parameters could be assessed by developing a“fish chemistry index”, which calculatesthe similarity of the present fish community with the potential natural community, but excludes those species strongly effected by deficits in stream channel morphology. Both fish chemistry index and benthic indices strongly correlated with pollution index parameters, clearly distinguishing between the more polluted Körsch sites and the less pollutedKrähenbach and Aich sites. Most of the single bioindices as well as overall assessment by multimetric indices indicated a gradient of decreasing quality from the reference stream Krähenbach to theslightly polluted Aich and Körsch upstream site (KE, upstream of all sewage treatment plants) and finally to the most polluted Körsch site directlybelow the most upstream sewage treatment plant (KD). According to the Water Framework Directive, the classification of ecological status of the benthos communities ranges from “high” (best of 5 classes) forthe reference stream to “bad” (5th class) for KD. Assessment of the fish community tends to score somewhat worse than the benthos due to deficits in morphological quality of the stream reaches. The benthos assessment and the newlydeveloped “fish chemistry index” correlated well with chemical water quality and hence with biomarkers, whereas ecological status of fish and overall ecological status was also influenced by river morphology. In conclusion all tested assessment methods on biocoenotic level are reliable indicators for the degree of human disturbance on small streams, whereas biomarkers are more suited for risk assessment and the investigation ofcause-effect-relationships.  相似文献   

12.
As the only undammed river in the Yangtze River basin and an important rare fish reserve, the Chishui River has attracted the world's attention. It was recently selected as a reference river for a pilot biomonitoring assessment within the European Union-China River Basin Management Programme. As the outcome of the project, a pilot multimetric index (MMI-CS) was developed for future assessment of the ecological status of the Chishui River basin. In this study, eight core metrics were selected and used to build the multimetric system. These metrics included the total number of taxa (TotalTax), the number of taxa of sprawlers (SprwlTax), the number of intolerant taxa (IntolTax), the Hilsenhoff biotic index (HBI), the percentage of Ephemeroptera, Trichoptera and Plecoptera (EPTPct), the number of Ephemeroptera taxa (EphemTax), the percentage of collectors (CllctPct) and the average score per taxon (ASPT). Five ecological status ratings (“Excellent”, “Good”, “Fair”, “Poor” and “Very Poor”) were established. The results of the evaluation showed that the index was reasonable and effective. The results of the assessment showed that sites with higher ecological status were distributed mainly in the upper and middle reaches of the region and that sites with lower ecological status were centrally distributed in the lower reaches. Moreover, the index should be refined and validated using additional datasets obtained in different seasons in the future for routine bioassessment within the framework of sustainable management.  相似文献   

13.
While the number of river restoration projects is increasing, studies on their success or failure relative to expectations are still rare. Only a few decision support methodologies and integrative methods for evaluating the ecological status of rivers are used in river restoration projects, thereby limiting informed management decisions in restoration planning as well as success control. Moreover, studies quantifying river restoration effects are often based on the assessment of a single organism group, and the effects on terrestrial communities are often neglected. In addition, potential effects of water quality or hydrological degradation are often not considered for the evaluation of restoration projects.We used multi-attribute value theory to re-formulate an existing river assessment protocol and extend it to a more comprehensive, integrated ecological assessment program. We considered habitat conditions, water quality regarding nutrients, micropollutants and heavy metals, and five instream and terrestrial organism groups (fish, benthic invertebrates, aquatic vegetation, ground beetles and riparian vegetation). The physical, chemical and biological states of the rivers were assessed separately and combined to value the overall ecological state.The assessment procedure was then applied to restored and unrestored sites at two Swiss rivers to test its feasibility in quantifying the effect of river restoration. Uncertainty in observations was taken into account and propagated through the assessment framework to evaluate the significance of differences between the ecological states of restored and unrestored reaches. In the restored sites, we measured a higher width variability of the river, as well as a higher width of the riparian zone and a higher richness of organism groups. According to the ecological assessment, the river morphology and the biological states were significantly better at the restored sites, with the largest differences detected for ground beetles and fish communities, followed by benthic invertebrates and riparian vegetation. The state of the aquatic vegetation was slightly lower at the restored sites. According to our assessment, the presence of invasive plant species counteracted the potential ecological gain. Water quality could be a causal factor contributing to the absence of larger improvements.Overall, we found significantly better biological and physical states, and integrated ecological states at the restored sites. Even in the absence of comprehensive before-after data, based on the similarity of the reaches before restoration and mechanistic biological knowledge, this can be safely interpreted as a causal consequence of restoration. An integrative perspective across aquatic and riparian organism groups was important to assess the biological effects, because organism groups responded differently to restoration. In addition, the potential deteriorating effect of water quality demonstrates the importance of integrated planning for the reduction of morphological, water quality and hydrological degradation.  相似文献   

14.
Estuarine habitats, and the fish assemblages associated with them, are potentially impacted upon by many anthropogenic influences which can have a direct influence on the food resources, distribution, diversity, breeding, abundance, growth, survival and behaviour of both resident and migrant fish species. The direct and indirect coupling between ichthyofaunal communities and human impacts on estuaries reinforces the choice of this taxonomic group as a biological indicator that can assist in the formulation of environmental and ecological quality objectives, and in the setting of environmental and ecological quality standards for these systems. This review examines the rationale and value of selecting fishes as bio-indicators of human induced changes within estuaries, using examples from both the northern and southern hemispheres. The monitoring of estuarine 'health' using fish studies at the individual and community level is discussed, with an emphasis on the potential use of estuarine fishes and their monitoring and surveillance in national and international management programmes. In illustrating the above concept, examples are presented of the way in which fishes are threatened by anthropogenic impacts and of the way in which teleosts can contribute to a monitoring of estuarine ecosystem health.  相似文献   

15.
Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.  相似文献   

16.
Rand Water's chemical water quality data from 1991 to 2000 were used to assess the water quality of the Waterval River, which contributes about 111 x 106m3 of water to the Vaal River annually. Due to a biological community's ability to reflect water quality changes over time, biomonitoring was undertaken to support chemical water quality monitoring. Aspects of the riverine habitat, invertebrates and fish were investigated to give baseline information on the area. Human activities such as mining, industry, agriculture, rural and urban settlements are currently responsible for the deterioration of the ecological integrity of this river system. Habitat degradation was especially evident in the upper reaches of the Waterval River, as indicated by the South African Scoring System, version 4, Average Score Per Taxon and Biotic Integrity scores. In general, the ratings achieved were lower than those expected for the available habitat, which suggests that human activities have influenced the biotic community. By selectively addressing the areas of concern, the state of the environment can be improved, using the current assessment as a benchmark to measure the success or shortcomings of any actions in the years to come.  相似文献   

17.
The European Water Framework Directive requires ecological status classification and monitoring of surface and ground waters using biological indicators. To act as a component of the “Macrophytes and Phytobenthos” biological quality element, as demanded by the Directive, a macrophyte‐based assessment system was developed for application in river site types in Germany. Macrophyte abundance data were collected from 262 sites in 202 rivers. Seven biocoenotic river site types were established using differences in characteristic macrophyte communities reflecting ecoregion, channel width, water depth, current velocity, water hardness, and ground water influence. For four of these river site types, a macrophyte assessment system was developed, for the remaining three river site types data were insufficient for developing an assessment system. Ecological status classification of river sites is based on the calculation of a Reference Index value, in some cases supplemented by additional vegetation criteria. The Reference Index quantifies the deviation of species composition and abundance from reference conditions and classifies sites as one of the five possible ecological quality classes specified in the Directive. The assessment of long river stretches with changing river site types along its course is discussed based on an example from the Forstinninger Sempt River, southeast Germany. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The River Yamuna emerges from Saptarishi Kund, Yamunotri and merge with River Ganges at Allahabad, India. Anthropogenic stress has affected the water quality of the river Yamuna drastically in the stretch traversing Delhi and its satellite towns (National Capital Region, NCR). In the present study, effect of water quality on the microbial life in the River Yamuna was analyzed using ciliate communities (Protista, Ciliophora) as bio-indicators. Water samples were collected from six sampling sites chosen according to the levels of pollution along the river and water quality was analysed using standard physicochemical factors. As the river traverses Delhi NCR, water quality deteriorates considerably as indicated by the Water Quality Index at the selected sampling sites. Seventy-four ciliate species representing nine classes were recorded. Based on the Shannon diversity index, maximum species diversity was found at the point where the river enters Delhi. The saprobity index showed the river water was beta-mesosaprobic when the river enters Delhi and alpha-mesosaprobic at downstream sites after the first major drain outfall. Significant relationship between the spatial variation in ciliate communities and abiotic parameters indicate that ciliates can be used as effective bioindicators of pollution in the River Yamuna.  相似文献   

19.
The concept of spatial scale is at the research frontier in ecology, and although focus has been placed on trying to determine the role of spatial scale in structuring communities, there still is a further need to standardize which organism groups are to be used at which scale and under which circumstances in environmental assessment. This paper contributes to the understanding of the variability at different spatial scales (reach, stream, river basin) of metrics characterizing communities of different biological quality elements (macrophytes, fishes, macroinvertebrates and benthic diatoms) as defined by the Water Framework Directive. For this purpose, high-quality reaches from medium-sized lowland streams of Latvia, Ecoregion 15 (Baltic) were sampled using a nested hierarchical sampling design: (river basin → stream → reach). The variability of metrics within the different groups of biological quality elements confirmed that large-bodied organisms (macrophytes and fish) were less variable than small-bodied organisms (macroinvertebrates and benthic diatoms) at reach, stream and river basin scales. Single metrics of biological quality elements had the largest variation at the reach scale compared with stream and basin scales. There were no significant correlations between biodiversity indices of the different organism groups. The correlation between diversity indices (Shannon’s and Simpson’s) of the biological quality elements (macrophytes, fish, benthic macroinvertebrates and benthic diatoms) and a number of measured environmental variables varied among the different organism groups. Relationships between diversity indices and environmental factors were established for all groups of biological quality elements. Our results showed that metrics of macrophytes and fish could be used for assessing ecological quality at the river basin scale, whereas metrics of macroinvertebrates and benthic diatoms were most appropriate at a smaller scale.  相似文献   

20.
Urban pollution of riverine ecosystem is a serious concern in the Niger Delta region of Nigeria. No biomonitoring tool exists for the routine monitoring of effects of urban pollution on riverine systems within the region. Therefore, the aim of this study was to develop and apply a macroinvertebrate‐based multimetric index for assessing water quality condition of impacted urban river systems in the Niger Delta region of Nigeria. Macroinvertebrate and physicochemical samples were collected from 11 stations in eight river systems. Based on the physicochemical variables, the stations were categorized into three impact categories namely least impacted stations (LIS), moderately impacted stations (MIS) and heavily impacted stations (HIS). Seventy‐seven (77) candidate metrics were tested and only five: Hemiptera abundance, %Coleoptera + Hemiptera, %Chironomidae + Oligochaeta, Evenness index and Logarithm of relative abundance of very large body size (>40–80 mm) were retained and integrated into the final Niger Delta urban multimetric index (MINDU). The validation dataset showed a correspondence of 83.3% between the index result and the physicochemically‐based classification for the LIS and a 75% correspondence for the MIS. A performance of 22.2% was recorded for the HIS. The newly developed MINDU proved useful as a biomonitoring tool in the Niger Delta region of Nigeria and can thus be used by environmental managers and government officials for routine monitoring of rivers and streams subjected to urban pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号