首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
Telomerase is an excellent target molecule for cancer therapy, though any effective agents have never been developed in human subjects. We designed a variety of hammerhead ribozymes against human telomerase RNA (hTR) and hTERT mRNA and studied their possibility as a tool for cancer therapy. To search promising target site of hTR, the catalytic actiuity of 3 kinds of hammerhead ribozymes was studied in cell-free system. They showed equivalent catalytic activity, but only 36-ribozyme, which was designed to cleave the template region of hTR, revealed telomerase inhibitory activity in an endometrial carcinoma cell line. Among hTERT-mRNA-targeted ribozymes, the ribozyme to cleave 13 nucleotides downstream from the 5'-end of hTERT mRNA (13-ribozyme) exhibited the strongest telomerase-inhibitory activity, and the ribozyme to cleave 59 nucleotides upstream from the poly(A) tail showed clear activity. Stable transfection studies confirmed that the 36-ribozyme as well as the 13-ribozyme suppressed telomerase. These observations suggest that the template region of hTR and 5'end of hTERT mRNA are promising target sites for ribozymes to reduce telomerase activity.  相似文献   

2.
Because the expression level of hTERT, a catalytic subunit of human telomerase, is a rate-limiting determinant of telomerase activity, hTERT mRNA would be an excellent target of hammerhead ribozymes for the regulation of telomerase activity. We studied the efficiency of several hammerhead ribozymes targeting hTERT mRNA by transient and stable transfection procedures. To screen the potency of the ribozymes, transient ribozyme transfection and telomerase determination were performed. The ribozyme targeting 13 nucleotides downstream from the 5'-end of hTERT mRNA (13-ribozyme) exhibited the strongest telomerase-inhibitory activity, and the ribozyme to target 59 nucleotides upstream from the poly(A) tail showed clear activity. A stable transfection study confirmed that the 13-ribozyme suppressed telomerase. These observations suggest that the 13-ribozyme can regulate telomerase activity and may possess potential for cancer therapy.  相似文献   

3.
The cellular 300 kDa protein known as p300 is a target for the adenoviral E1A oncoprotein and it is thought to participate in prevention of the G0/G1 transition during the cell cycle, in activation of certain enhancers and in the stimulation of differentiation pathways. In order to determine the exact function of p300, as a first step we constructed a simple assay system for the selection of a potential target site of a hammerhead ribozyme in vivo. For the detection of ribozyme-mediated cleavage, we used a fusion gene (p300-luc) that consisted of the sequence encoding the N-terminal region of p300 and the gene for luciferase, as the reporter gene. We were also interested in the correlation of the GUX rule, for the triplet adjacent to the cleavage site, with ribozyme activity in vivo. Therefore, we selected five target sites that all included GUX The rank order of activities in vitro indeed followed the GUX rule; with respect to the kcat, a C residue as the third base (X) was the best, next came an A residue and a U residue was the worst (GUC > GUA > GUU). However, in vivo the tRNA(Val) promoter-driven ribozyme, targeted to a GUA located upstream of the initiation codon, had the highest inhibitory effect (96%) in HeLa S3 cells when the molar ratio of the DNA template for the target p300 RNA to that for the ribozyme was 1:4. Since the rank order of activities in vivo did not conform to the GUX rule, it is unlikely that the rate limiting step for cleavage of the p300-luc mRNA was the chemical step. This kind of ribozyme expression system should be extremely useful for elucidation of the function of p300 in vivo.  相似文献   

4.
Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. A hammer-headed ribozyme (telomerase ribozyme, te-loRZ) directed against the RNA component of human telomerase (hTR) was designed and synthesized. TeloRZ showed a specific cleavage activity against the hTR. The cleavage efficacy reached 60%. A eukaryotic expression plasmid containing teloRZ gene was inducted into HeLa cells by lipofectamine, the telomerase activity in HeLa cells expressing teloRZ decreased to one eighth of that in the control cells. The doubling time increased significantly and the apoptosis ratio was elevated with increasing population doublings (PDS). After 19-20 PDS 95% cells were apoptotic. To further investigate the effect of teloRZ on tumor growth, the eukaryotic expression plasmid containing teloRZ was injected into transplanted tumor of nude mouse. The teloRZ e  相似文献   

5.
Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. A hammer-headed ribozyme (telomerase ribozyme, teloRZ) directed against the RNA component of human telomerase (hTR) was designed and synthesized. TeloRZ showed a specific cleavage activity against the hTR. The cleavage efficacy reached 60%. A eukaryotic expression plasmid containing teloRZ gene was inducted into HeLa cells by lipofectamine, the telomerase activity in HeLa cells expressing teloRZ decreased to one eighth of that in the control cells. The doubling time increased significantly and the apoptosis ratio was elevated with increasing population doublings (PDS). After 19–20 PDS 95% cells were apoptotic. To further investigate the effect of teloRZ on tumor growth, the eukaryotic expression plasmid containing teloRZ was injected into transplanted tumor of nude mouse. The teloRZ effectively inhibited the telomerase activity in transplanted tumor, promoted apoptosis of the transplanted tumor cells, and decreased the tumor size significantly. These results indicate that teloRZ can effectively inhibit telomerase activity and growth of tumor cells, and suggest the potential use of this ribozyme in anti-cancer therapy.  相似文献   

6.
特异切割马铃薯卷叶病毒复制酶基因负链的核酶研究   总被引:6,自引:0,他引:6  
根据锤头状核酶的作用模式,设计、合成并克隆了特异性切割马铃薯地病毒中国分离株(PLRV-Ch)复制酶基因负链RNA的核酶序列,以体外转录的PLRV-Ch复制酶基因负链RNA作为底物,与转录的核酶RNA共同保温,以检测核酶对底和的体外切割作用。实验结果表明,核酸疼 RNA对PLRV-Ch复制酶基因负锭RNA具有特异切割作用。  相似文献   

7.
8.
9.
10.
11.
人端粒酶逆转录酶核酶抑制端粒酶活性   总被引:9,自引:0,他引:9  
为有效切割端粒酶逆转录酶mRNA以降低端粒酶活性 ,从而使肿瘤细胞生长变慢 ,凋亡增加。设计并合成了针对端粒酶逆转录酶mRNA的锤头状核酶基因 ,构建了该核酶基因的体外转录和真核表达质粒。检测了该核酶对端粒酶逆转录酶mRNA的体外切割效力。并将该核酶基因转染至肿瘤细胞中 ,检测其对肿瘤细胞端粒酶活性和生物学性状的影响。结果表明 ,该核酶在体外和细胞内均能有效切割端粒酶逆转录酶mRNA ;在细胞内能明显抑制端粒酶活性 ,使细胞生长变慢 ,倍增时间延长。因而 ,该核酶可望成为有效的端粒酶抑制剂 ,在抑制肿瘤生长中发挥作用  相似文献   

12.
13.
14.
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.  相似文献   

15.
Human telomerase catalyzes nucleolytic primer cleavage   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
18.
The ribonucleoprotein complex telomerase is critical for replenishing chromosome-end sequence during eukaryotic DNA replication. The template for the addition of telomeric repeats is provided by the RNA component of telomerase. However, in budding yeast, little is known about the structure and function of most of the remainder of the telomerase RNA. Here, we report the identification of a paired element located immediately 5' of the template region in the Saccharomyces cerevisiae telomerase RNA. Mutations disrupting or replacing the helical element showed that this structure, but not its exact nucleotide sequence, is important for telomerase function in vivo and in vitro. Biochemical characterization of a paired element mutant showed that the mutant generated longer products and incorporated noncognate nucleotides. Sequencing of in vivo synthesized telomeres from this mutant showed that DNA synthesis proceeded beyond the normal template. Thus, the S. cerevisiae element resembles a similar element found in Kluyveromyces budding yeasts with respect to a function in template boundary specification. In addition, the in vitro activity of the paired element mutant indicates that the RNA element has additional functions in enzyme processivity and in directing template usage by telomerase.  相似文献   

19.
通过微机对bcl-2RNA二级结构的分析,设计针对bcl-2片段5'CGCGACCCGGUCGCCAGGACCUCG3'的“锤头状”(Hammerhead)核酶(Ribozyme,RD)基因,平端连接于pGEM-3Zf(-)HincⅡ位点,克隆后经测序表明序列正确,bcl-2和Ribozyme基因经体外转录,50℃作用2h,从1656-1657(C-G)位之间切断bcl-2RNA片段.  相似文献   

20.
The previously described HIV-1 directed hammerhead ribozyme 2as-Rz12 can form with its target RNA 2s helices I and III of 128 and 278 base pairs (bp). A series of derivatives was made in which helix III was truncated to 8, 5, 4, 3, and 2 nucleotides (nt). These asymmetric hammerhead ribozymes were tested for in vitro cleavage and for inhibition of HIV-1 replication in human cells. Truncation of helix III to 8 bp did not affect the in vitro cleavage potential of the parental catalytic antisense RNA 2as-Rz12. Further truncation of helix III led to decreased cleavage rates, with no measurable cleavage activity for the 2 bp construct. All catalytically active constructs showed complex cleavage kinetics. Three kinetic subpopulations of ribozyme-substrate complexes could be discriminated that were cleaved with fast or slow rates or not at all. Gel purification of preformed ribozyme-substrate complexes led to a significant increase in cleavage rates. However, the complex cleavage pattern remained. In mammalian cells, the helix III-truncated constructs showed the same but no increased inhibitory effect of the comparable antisense RNA on HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号