首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

2.
Palmitate-induced uncoupling, which involves ADP/ATP and aspartate/glutamate antiporters, has been studied in liver mitochondria of old rats (22-26 months) under conditions of lipid peroxidation and inhibition of oxidative stress by antioxidants--thiourea, Trolox, and ionol. It has been shown that in liver mitochondria of old rats in the absence of antioxidants and under conditions of overproduction of conjugated dienes, the protonophoric uncoupling activity of palmitate is not suppressed by either carboxyatractylate or aspartate used separately. However, the combination of carboxyatractylate and aspartate decreased uncoupling activity of palmitate by 81%. In this case, palmitate-induced uncoupling is limited by a stage insensitive to both carboxyatractylate and aspartate. In the presence of antioxidants, the palmitate-induced protonophoric uncoupling activity is suppressed by either carboxyatractylate or aspartate used separately. Under these conditions, palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter). In the absence of antioxidants, the uncoupling activity of palmitate is not suppressed by ADP either in the absence or in the presence of aspartate. However, in the presence of thiourea, Trolox, or ionol ADP decreased the uncoupling activity of palmitate by 38%. It is concluded that in liver mitochondria of old rats the development of oxidative stress in the presence of physiological substrates of ADP/ATP and aspartate/glutamate antiporters (ADP and aspartate) results in an increase of the protonophoric uncoupling activity of palmitate.  相似文献   

3.
In the presence of oligomycin, EGTA, and magnesium ions, the protonophore uncoupling activity of palmitate (V(Pal)) is determined as the ratio of the acceleration of respiration with palmitate to its concentration. Under these conditions, V(Pal) in liver mitochondria of one-month-old rats with the body weight of 50 g is 1.46-fold higher than in liver mitochondria of adult rats with the body weight of 250 g, whereas the uncoupling activity of FCCP does not depend on the age of the animals. The difference in V(Pal) is mainly due to its component insensitive to carboxyatractylate and glutamate (V(Ins)). This value is 2.9-fold higher in mitochondria of one-month-old rats than in those of adult rats. The protonophore activity of palmitate is similar in liver mitochondria of four-day-old and adult rats. In liver mitochondria of adult mammals (mouse, rat, guinea pig, rabbit), V(Pal) decreases with increase in the body weight of the animals. In double logarithmic coordinates, the dependence of the V(Pal) value on the body weight is linear with slope angle tangent of -0.18. The V(Pal) value is mainly contributed by its component V(Ins). In the presence of calcium ions, palmitate induces the nonspecific permeability of the inner membrane of liver mitochondria (pore opening). This Ca2+-dependent uncoupling effect of palmitate is less pronounced in mitochondria of one-month-old rats than in those of adult rats. In mitochondria of adult animals (mice, rats, and guinea pigs), the Ca2+-dependent uncoupling activity of palmitate is virtually the same. It is concluded that the protonophore uncoupling effect of palmitate in liver mitochondria of mammals, unlike its Ca2+-dependent effect, is associated with thermogenesis at rest and also with production of additional heat on cooling of the animals.  相似文献   

4.
This paper considers stages of the search (initiated by V. P. Skulachev) for a receptor protein for fatty acids that is involved in their uncoupling effect. Based on these studies, mechanism of the ADP/ATP antiporter involvement in the uncoupling induced by fatty acids was proposed (Skulachev, V. P. (1991) FEBS Lett., 294, 158– 162). New data (suppression by carboxyatractylate of the SDS-induced uncoupling, pH-dependence of the ADP/ATP and the glutamate/aspartate antiporter contributions to the uncoupling, etc.) led to modification of this hypothesis. During discussion of the uncoupling effect of fatty acids caused by opening of the Ca2+-dependent pore, special attention is given to the effects of carboxyatractylate added in the presence of ADP. The functioning of the uncoupling protein UCP2 in kidney mitochondria is considered, as well as the diversity observed by us in effects of 200 µM GDP on decrease in under the influence of oleic acid added after H2O2 (in the presence of succinate, oligomycin, malonate). A speculative explanation of the findings is as follows: 1) products of lipid and/or fatty acid peroxidation (PPO)modify the ADP/ATP antiporter in such a way that its involvement in the fatty acid-induced uncoupling is suppressed by GDP; 2) GDP increases the PPO concentration in the matrix by suppression of efflux of fatty acid hydroperoxide anions through the UCP (Goglia, F., and Skulachev, V. P. (2003) FASEB, 17, 1585–1591)and/or of efflux of PPO anions with involvement of the GDP-sensitive ADP/ATP antiporter; 3) PPO can potentiate the oleate-induced decrease in due to inhibition of succinate oxidation.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 197–202.Original Russian Text Copyright © 2005 by Mokhova, Khailova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

5.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by β-hydroxybutyrate or thiourea, but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by β-hydroxybutyrate or thiourea. It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids, such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection.  相似文献   

6.
A concise review is given of the research in our laboratory on the ADP/ATP carrier (AAC) and the uncoupling protein (UCP). Although homologous proteins, their widely different functions and contrasts are stressed. The pioneer role of research on the AAC, not only for the mitochondrial but also for other carriers, and the present state of their structure-function relationship is reviewed. The function of UCP as a highly regulated H+ carrier is described in contrast to the largely unregulated ADP/ATP exchange in AAC. General principles of carrier catalysis as derived from studies on the AAC and UCP are elucidated.  相似文献   

7.
It has been found that the protonophoric specific uncoupling activity of palmitic acid in rat liver mitochondria does not change as its concentration increases from 5 to 40 μM. Under these conditions, the component of the specific uncoupling activity that describes the participation in uncoupling of the ADP/ATP antiporter (sensitive to carboxyatractylate) increases, and the component of specific uncoupling activity that characterizes the participation in the uncoupling of the aspartate/glutamate antiporter (sensitive to glutamate) decreases by the same value. A kinetic model of the fatty acid-induced uncoupling activity with the participation of ADP/ATP and aspartate/glutamate antiporters has been developed. According to the model, these carriers can exist in two forms: active, i.e., participating in the uncoupling, and inactive. The interaction of a fatty acid with the regulator site of the ADP/ATP antiporter translates it from the inactive to the active form, while the interaction of a fatty acid with the regulator site of the aspartate/glutamate antiporter, on the contrary, translates it from the active form to inactive. The velocity of transport of a fatty acid anion by the antiporter from the internal monolayer of the inner membrane to the external monolayer is proportional to the product of the concentration of the fatty acid and the active form of this carrier. A good conformity of the model to experimentally obtained data is shown provided that (a) ADP/ATP and aspartate/glutamate antiporters, being completely in active state, transfer fatty acid anions with the same velocity; (b) the equilibrium dissociation constants of a complex of the carrier with the fatty acid in these antiporters are equal.  相似文献   

8.
The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use.By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate.The fluorescent transfer is inhibited by ADP, bongkrekate and carboxy-atractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix.The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment.The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period.  相似文献   

9.
It has been found that the protonophoric specific uncoupling activity of palmitic acid in rat liver mitochondria does not change as its concentration increases from 5 to 40 microM. Under these conditions, the component of the specific uncoupling activity, which describes the participation in uncoupling of the ADP/ATP antiporter (sensitive to carboxyatractylate), increases, and the component of specific uncoupling activity, which characterizes the participation in the uncoupling of the aspartate/glutamate antiporter (sensitive to glutamate), decreases by the same value. A kinetic model of the fatty acid-induced uncoupling activity with the participation of ADP/ATP and aspartate/glutamate antiporters has been developed. According to the model, these carriers can exist in two forms: an active, i.e., participating in the uncoupling, and an inactive. The interaction of a fatty acid with the regulator site of the ADP/ATP antiporter translates it from the inactive to the active form, while the interaction of a fatty acid with the regulator site of the aspartate/glutamate antiporter, on the contrary, translates it from the active form to inactive. The velocity of transport of a fatty acid anion by the antiporter from the internal monolayer of the internal membrane to the external monolayer is proportional to the product of the concentration of the fatty acid and the active form of this carrier. A good conformity of the model to experimentally obtained data is shown provided that (a) ADP/ATP and aspartate/glutamate antiporters, being completely in an active state, transfer fatty acid anions with the same velocity; (b) the equilibrium dissociation constants of a complex of the carrier with the fatty acid in these antiporters are equal.  相似文献   

10.
Changes of the extra- and intramitochondrial ATP/ADP ratios as a function of the respiratory state were measured in incubations with rat liver mitochondria. ATPase or creatine/creatine kinase was used to change the extramitochondrial ATP/ADP ratio; the separation of the mitochondrial pellet was performed by a Millipore filtration technique. Under all conditions tested, the intramitochondrial ratio changed in the same direction as the extramitochondrial one, except in the presence of atractylate where this correlation was not observed. Furthermore, it could be shown that the oxygen uptake and pyruvate carboxylase activity correlated with the intramitochondrial ATP/ADP ratio and not with the extramitochondrial one. These results do not support the proposal that the adenine nucleotide translocase is rate limiting for respiration.  相似文献   

11.
In liver mitochondria, the phosphate carrier is involved in protonophoric uncoupling effect of fatty acids together with ADP/ATP and aspartate/glutamate antiporters (Samartsev et al. 2003. Biochemistry (Moscow). 68, 618–629). Liver mitochondria depleted of endogenous oxidation substrates (exhausted mitochondria) have been used in the present work. In these mitochondria, like in the intact liver mitochondria, the specific inhibitor of ADP/ATP antiporter (carboxyatractylate) and the substrate of aspartate/glutamate antiporter (aspartate) suppress the uncoupling activity of palmitic acid. It is shown that in exhausted mitochondria the substrate of phosphate carrier (inorganic phosphate) and its nonspecific inhibitor mersalyl partially suppress palmitic acid-induced uncoupling due to decrease in the component of uncoupling activity sensitive to carboxyatractylate and aspartate. In the presence of inorganic phosphate or mersalyl, carboxyatractylate and aspartate added separately subsequent to palmitic acid do not suppress its uncoupling activity. They are effective only when added jointly. In the presence of thiourea or pyruvate, such effects of inorganic phosphate and mersalyl are not observed. It is supposed that in the presence of inorganic phosphate or mersalyl and under the condition of oxidation of critical SH-groups in mitochondria, the phosphate carrier, ADP/ATP antiporter, and aspartate/glutamate antiporter are involved in uncoupling function together with the general fatty acid pool as an uncoupling complex. The role of phosphate carrier in this complex may consist in facilitation of lateral transfer of the fatty acid molecules from one antiporter to another.  相似文献   

12.
13.
The mitochondrial transporter, the aspartate/glutamate carrier (AGC), is a necessary component of the malate/aspartate cycle, which promotes the transfer into mitochondria of reducing equivalents generated in the cytosol during glycolysis. Without transfer of cytosolic reducing equivalents into mitochondria, neither glucose nor lactate can be completely oxidized. In the present study, immunohistochemistry was used to demonstrate the absence of AGC from retinal glia (Müller cells), but its presence in neurons and photoreceptor cells. To determine the influence of the absence of AGC on sources of ATP for glutamate neurotransmission, neurotransmission was estimated in both light- and dark-adapted retinas by measuring flux through the glutamate/glutamine cycle and the effect of light on ATP-generating reactions. Neurotransmission was 80% faster in the dark as expected, because photoreceptors become depolarized in the dark and this depolarization induces release of excitatory glutamate neurotransmitter. Oxidation of [U-14C]glucose, [1-14C]lactate, and [1-14C]pyruvate in light- and dark-adapted excised retinas was estimated by collecting 14CO2. Neither glucose nor lactate oxidation that require participation of the malate/aspartate shuttle increased in the dark, but pyruvate oxidation that does not require the malate/aspartate shuttle increased to 36% in the dark. Aerobic glycolysis was estimated by measuring the rate of lactate appearance. Glycolysis was 37% faster in the dark. It appears that in the retina, ATP consumed during glutamatergic neurotransmission is replenished by ATP generated glycolytically within the retinal Müller cells and that oxidation of glucose within the Müller cells does not occur or occurs only slowly.  相似文献   

14.
The import of proteins into mitochondria is an essential process, largely investigated in vitro with isolated mitochondria and radioactively labeled precursors. In this study, we used intact cells and fusions with genes encoding two reporter proteins, green fluorescent protein (GFP) and beta-galactosidase (lacZ), to probe the import of the ADP/ATP carrier (AAC). Typical mitochondrial fluorescence was observed with AAC-GFP fusions containing at least one complete transmembrane loop. This confirms the results of in vitro analysis demonstrating that an internal targeting signal was present in each one of the three transmembrane loops of the carrier. The fusions of AAC fragments to beta-galactosidase demonstrated that the targeting signal was capable of delivering the reporter molecule to the mitochondrial surface, but not to internalize it to a protease-inaccessible location. The delivery to a protease-inaccessible location required the presence of more distal sequences present within the third (C-terminal) transmembrane loop of the carrier molecule. The results of our study provide an alternative for investigation in a natural context of mitochondrial protein import in cells when the isolation of intact, functional mitochondria is not achievable.  相似文献   

15.
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain.  相似文献   

16.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix.  相似文献   

17.
At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential () across the inner mitochondrial membrane caused by 10 M myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the classic state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of classic pore opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped decrease induced by 5 M myristic acid and 5 M Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the decrease, and the following addition of EGTA produced only a weak (if any) increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the decrease. These data show that the cyclosporin A-sensitive decrease in by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive decrease results from a conversion of to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations.  相似文献   

18.
Data are raeviewed on mitochondrial systems whose functioning in plants diminishes the efficiency of oxidative phosphorylation. The involvement in this process of alternative oxidase, thermogenin-like uncoupling proteins, a 310 kD stress protein, free fatty acids, and the ADP/ATP antiporter is considered. The role of these systems is discussed with regard to thermogenesis, controlled production of reactive oxygen species, and regulation of bioenergetics and metabolism.  相似文献   

19.
Two distinct conformations of the mitochondrial ADP/ATP carrier involved in the adenine nucleotide transport are called BA and CATR conformations, as they were distinguished by binding of specific inhibitors bongkrekic acid (BA) and carboxyatractyloside (CATR), respectively. To find out which amino acids are implicated in the transition between these two conformations, which occurs during transport, mutants of the Saccharomyces cerevisiae ADP/ATP carrier Anc2p responsible for resistance of yeast cells to BA were identified and characterized after in vivo chemical or UV mutagenesis. Only four different mutations could be identified in spite of a large number of mutants analyzed. They are located in the Anc2p transmembrane segments I (G30S), II (Y97C), III (L142S), and VI (G298S), and are independently enabling growth of cells in the presence of BA. The variant and wild-type Anc2p were produced practically to the same level in mitochondria, as evidenced by immunochemical analysis and by atractyloside binding experiments. ADP/ATP exchange mediated by Anc2p variants in isolated mitochondria was more efficient than that of the wild-type Anc2p in the presence of BA, confirming that BA resistance of the mutant cells was linked to the functional properties of the modified ADP/ATP carrier. These results suggest that resistance to BA is caused by alternate conformation of Anc2p due to appearance of Ser or Cys at specific positions. Different interactions of these residues with other amino acids and/or BA could prevent formation of stable inactive Anc2p BA complex.  相似文献   

20.
The mitochondrial ADP/ATP carrier plays a central role in aerobic cell energetics by providing to the cytosol the ATP generated by oxidative phosphorylation. Though discovered around 40 years ago owing to the existence of unique inhibitors and in spite of numerous experimental approaches, this carrier, which stands as a model of the mitochondrial solute carriers keeps some long-standing mystery. There are still open challenging questions among them the precise ADP/ATP transport mechanism, the functional oligomeric state of the carrier and relationships between human ADP/ATP carrier dysfunctioning and pathologies. Deciphering the 3D structure of this carrier afforded a considerable progress of the knowledge but requires now additional data focused on molecular dynamics from this static picture. State of the art in this topic is reviewed and debated in this paper in view of better comprehending origin of the discrepancies in these questions and, finally, the multiple physiological roles of this carrier in eukaryotic cell economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号