首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The avian retroviral v-myb gene and its cellular homologues throughout the animal and plant kingdoms contain a conserved DNA binding domain. We have isolated an insertional mutant of Dictyostelium unable to switch from slug migration to fruiting body formation i.e. unable to culminate. The gene that is disrupted, mybC, codes for a protein with a myb-like domain that is recognized by an antibody against the v-myb repeat domain. During development of myb+ cells, mybC is expressed only in prestalk cells. When developed together with wild-type cells mybC- cells are able to form both spores and stalk cells very efficiently. Their developmental defect is also bypassed by overexpressing cAMP-dependent protein kinase. However even when their defect is bypassed, mybC null slugs and culminates produce little if any of the intercellular signalling peptides SDF-1 and SDF-2 that are believed to be released by prestalk cells at culmination. We propose that the mybC gene product is required for an intercellular signaling process controlling maturation of stalk cells and spores and that SDF-1 and/or SDF-2 may be implicated in this process.  相似文献   

3.
When prespore cells approach the top of the stalk in a Dictyostelium fruiting body, they rapidly encapsulate in response to the signalling peptide SDF-2. Glutamate decarboxylase, the product of the gadA gene, generates GABA from glutamate. gadA is expressed exclusively in prespore cells late in development. We have found that GABA induces the release of the precursor of SDF-2, AcbA, from prespore cells. GABA also induces exposure of the protease domain of TagC on the surface of prestalk cells where it can convert AcbA to SDF-2. The receptor for GABA in Dictyostelium, GrlE, is a seven-transmembrane G-protein-coupled receptor that is most similar to GABA(B) receptors. The signal transduction pathway from GABA/GrlE appears to be mediated by PI3 kinase and the PKB-related protein kinase PkbR1. Glutamate acts as a competitive inhibitor of GABA functions in Dictyostelium and is also able to inhibit induction of sporulation by SDF-2. The signal transduction pathway from SDF-2 is independent of the GABA/glutamate signal transduction pathway, but the two appear to converge to control release of AcbA and exposure of TagC protease. These results indicate that GABA is not only a neurotransmitter but also an ancient intercellular signal.  相似文献   

4.
We describe an unusual hybrid histidine protein kinase, which is important for spatially coupling cell aggregation and sporulation during fruiting body formation in Myxococcus xanthus. A rodK mutant makes abnormal fruiting bodies and spores develop outside the fruiting bodies. RodK is a soluble, cytoplasmic protein, which contains an N-terminal sensor domain, a histidine protein kinase domain and three receiver domains. In vitro phosphorylation assays showed that RodK possesses kinase activity. Kinase activity is essential for RodK function in vivo. RodK is present in vegetative cells and remains present until the late aggregation stage, after which the level decreases in a manner that depends on the intercellular A-signal. Genetic evidence suggests that RodK may regulate multiple temporally separated events during fruiting body formation including stimulation of early developmental gene expression, inhibition of A-signal production and inhibition of the intercellular C-signal transduction pathway. We speculate that RodK undergoes a change in activity during development, which is reflected in changes in phosphotransfer to the receiver domains.  相似文献   

5.
Mitogen-activated protein (MAP)-kinase extracellular signal regulated kinase (ERK2) is essential for regulation of the intracellular cyclic adenosine monophosphate (cAMP) level in Dictyostelium. The mutant lacking ERK2, erk2-null, is arrested at the pre-aggregation stage, but develops into a fruiting body in a mixed population of wild-type and mutant cells. This fact implies that wild-type cells provide a certain factor that is missing in erk2-null. It was clarified that both wild-type strains KAx3 and Ax2 secreted a diffusible factor that enables erk2-null to develop. The fruiting body formed from erk2-null cells was smaller than that formed by the wild-type cells and consisted of a small sorus supported by a slender stalk with a single row of vacuolated stalk cells. The resulting spores were able to germinate and multiply on a bacterial lawn, but they were unable to develop unless the factor was provided. After 8 h of starvation, wild-type cells started to secrete the factor, which had a molecular mass of less than 3 kDa and was heat stable. The effect of this factor could not be mimicked by either cAMP or folate. Adenylyl cyclase A and cell surface cAMP receptors cAR1 and cAR3 were all indispensable components for the factor to function. Considering the molecular mass and the mode of action, this factor could be a novel one. Possible targets of this factor are discussed in terms of cAMP-dependent protein kinase activation.  相似文献   

6.
7.
The evolutionarily stable stalk ratio (ESSR) in the cellular slime molds is studied when the fruiting body is formed by multiple clones of various size. The survival probability of a spore cell is assumed to depend on the stalk ratio and the fruiting body size. ESSR is obtained as the non-co-operative equilibrium (Nash solution) that maximizes the fitness of each clone. The following two predictions are obtained: (1) the number of spore cells produced by each clone forming a fruiting body tends to be equalized, even if a variation in clone size exists. As a result, the larger clones do not necessarily enjoy higher fitness than the smaller ones. (2) The stalk ratio and the overall fitness of the fruiting body decrease as the genetic diversity in the fruiting body increases. A condition for the stalk to spore ratio to be invariant of overall fruiting body size is also investigated. Finally, "the law of equalization in net incomes" is proposed, extending result (1) into the broader range of resource allocation problems.  相似文献   

8.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

9.
The A and B mating type pathways in Coprinus cinereus monokaryons can be activated by transformation with cloned genes from strains of compatible mating types. The presence of heterologous A mating-type genes (Aon) induces production of submerged chlamydospores, hyphal knots and sclerotia in cultures kept in the dark. Upon illumination of transformants of certain strains (218), fruiting body primordia may develop that arrest before karyogamy. Furthermore, formation of aerial spores (oidia) is repressed by the action of A mating type genes in the dark, but light overrides this repression. Heterologous B mating type genes enhance the effects of the A genes on developmental processes, and partially repress the negative action of light on A-mediated regulation of development. Most notably, A-induced fruiting occurs more efficiently and earlier when the B mating type pathway is also active (Bon). However, activation of the B pathway alone is not sufficient to induce fruiting. Unlike A-activated transformants, A+ B-activated transformants of monokaryon 218 form mature fruiting bodies. Therefore, the B genes control fruiting body maturation at the stage of karyogamy. Basidia within the fruiting bodies that were analysed contained four spores in a typical post-meiotic arrangement. In the absence of an activated A mating type pathway, B mating type genes cause deformation and hyperbranching of vegetative hyphae, a reduction in aerial mycelium, and invasion of the agar substrate - a phenotype resembling the "flat" phenotype known from B-activated Schizophyllum commune strains. B-activated transformants usually show enhanced production of chlamydospores and hyphal knots, but maturation of sclerotia is variably efficient. Activation of the B mating type pathway in monokaryons blocked acceptance of nuclei, but not activation of the A mating type pathway.  相似文献   

10.
 Shortly after initiation of Dictyostelium fruiting body formation, prespore cells begin to differentiate into non-motile spores. Although these cells lose their ability to move, they are, nevertheless, elevated to the tip of the stalk. Removal of the amoeboid anterior-like cells, located above the differentiating spores in the developing fruiting body, prevents further spore elevation although the stalk continues to elongate. Furthermore, replacement of the anterior-like cells with anterior-like cells from another fruiting body largely restores the ability to lift the spores to the top of the stalk. However, if amoeboid prestalk cells are used to replace the anterior-like cells, there is no restoration of spore elevation. Finally, when a droplet of mineral oil replaces differentiating spores, it is treated as are the spores: the mineral oil is elevated in the presence of anterior-like cells and becomes arrested on the stalk in the absence of anterior-like cells. Because a similar droplet of mineral oil is totally ignored by slug tissue, it appears that there is a dramatic transformation in the treatment of non-motile matter at this point in Dictyostelium development. Received: 26 January 1998 / Accepted: 27 May 1998  相似文献   

11.
12.
13.
PKA在盘基网柄菌(Dictyostelium discoideum)多细胞发育中的作用   总被引:1,自引:0,他引:1  
在盘基网柄菌(Dictyosteliumdiscoideum)多细胞发育中,蛋白激酶A(proteinkinaseA,PKA)发挥多重作用.细胞聚集阶段,PKA调节腺苷酰环化酶的活性,中转cAMP,诱导dut、pdi等一些发育早期的基因表达;参与启动聚集后的细胞分化和形态构成,增强GBF活性,激活前孢子细胞特有基因的表达;它还精密调控前柄细胞特有基因ecmB的表达,准确启动拔顶发育,诱导孢柄和孢子的成熟.子实体形成后,PKA又是维持孢子休眠和保证孢子有效萌发的必需因子.在PKA调控下,盘基网柄菌有条不紊地完成整个发育过程.  相似文献   

14.
Scanning electron microscopy was used to follow fruiting body formation by pure cultures of Chondromyces crocatus M38 and Stigmatella aurantica. Vegetative cells were grown on SP agar and then transferred to Bonner salts agar for fructification. Fruiting in both species commences with the formation of aggregation centers which resemble a fried egg in appearance. In Chondromyces the elevated center or "yolk" region of the aggregation enlarges into a bulbous structure under which the stalk forms and lengthens. At maximum stalk height the bulb extends laterally as bud-like swellings appear. These are immature sporangia and are arranged in a distintive radial pattern around the top of the stalk. This symmetry is lost as more sporangia are formed. Stigmatella does not form a bulb; rather the yolk region of the aggregation center projects upward to form a column-like stalk which is nearly uniform in diameter throughout its length. At maximum stalk height, the terminus of the stalk develops an irregular pattern of bud-like swellings. These differentiate into sporangia. Stalks of 2-week-old mature fruiting bodies of both species appear to be cellular in composition. Stereomicrographs suggest orientation of these cells parallel to the long axis of the stalk. Stalks of 8-week-old fruiting bodies of Chondromyces were acellular and consisted of empty tubules, suggesting that the cells undergo degeneration with aging of the fruiting body.  相似文献   

15.
The localization and distribution of the stress protein SP21 in indole-induced vegetative cells, fruiting bodies, and heat shocked cells of Stigmatella aurantiaca were determined by immunoelectron microscopy. SP21 was found at the cell periphery in heat-shocked cells and either at the cell periphery or within the cytoplasm in indole-induced cells, often concentrated in clusters. In fruiting-body-derived spores, SP21 was located mainly at the cell wall, preferentially at the outer periphery. Furthermore, SP21 antigen was associated with cellular remnants within the stalk and within the peripheral horizon next to the fruiting body.  相似文献   

16.
Developmental decisions in Dictyostelium discoideum.   总被引:5,自引:0,他引:5       下载免费PDF全文
A few hours after the onset of starvation, amoebae of Dictyostelium discoideum start to form multicellular aggregates by chemotaxis to centers that emit periodic cyclic AMP signals. There are two major developmental decisions: first, the aggregates either construct fruiting bodies directly, in a process known as culmination, or they migrate for a period as "slugs." Second, the amoebae differentiate into either prestalk or prespore cells. These are at first randomly distributed within aggregates and then sort out from each other to form polarized structures with the prestalk cells at the apex, before eventually maturing into the stalk cells and spores of fruiting bodies. Developmental gene expression seems to be driven primarily by cyclic AMP signaling between cells, and this review summarizes what is known of the cyclic AMP-based signaling mechanism and of the signal transduction pathways leading from cell surface cyclic AMP receptors to gene expression. Current understanding of the factors controlling the two major developmental choices is emphasized. The weak base ammonia appears to play a key role in preventing culmination by inhibiting activation of cyclic AMP-dependent protein kinase, whereas the prestalk cell-inducing factor DIF-1 is central to the choice of cell differentiation pathway. The mode of action of DIF-1 and of ammonia in the developmental choices is discussed.  相似文献   

17.
Stigmatella aurantiaca, strain DW-4, is a bacterium that grows as single cells in liquid culture but will synchronously aggregate and construct multicellular fruiting bodies when starved on an agar surface. The fruiting body consists of a stalk and several sporangia housing differentiated myxospores. Fruiting body development is stimulated by exposure of the aggregating cells to incandescent light.  相似文献   

18.
王伟科  宋吉玲  闫静  陆娜  袁卫东  周祖法 《菌物学报》2020,39(10):1874-1885
通过对桑树桑黄Sanghuangporus sanghuang菌丝体和子实体2个不同生长阶段的转录组进行分析,为研究桑黄子实体生长发育相关机制奠定基础。采用Illumina测序技术,对桑树桑黄菌株S23菌丝体和子实体2个不同生长发育阶段进行了全转录组测序。将转录组测序reads比对到参考序列上,菌丝体测序样本的reads比对率为82.89%;子实体测序样本的reads比对率为83%。基因差异表达分析显示,与菌丝体相比,子实体中显著上调表达基因为2 898个,显著下调表达基因为1 965个。经过Blast nr比对发现,桑黄菌在子实体阶段表达量上升的基因主要与各种氧化酶活性、疏水蛋白等相关;表达量下降的基因主要与糖类、氨基酸结合、运输等相关。基因本体(gene ontology,GO)富集分析表明,菌丝体及子实体两个阶段与跨膜转运相关的差异表达基因富集明显。代谢通路(pathway)富集分析表明,类固醇生物合成、精氨酸生物合成、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路等差异基因富集明显。  相似文献   

19.
Wang B  Kuspa A 《Eukaryotic cell》2002,1(1):126-136
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB pkaR cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.  相似文献   

20.
We have previously identified a stalk-specific wheat germ agglutinin (WGA)-binding protein, wst34, in the cellular slime mould Dictyostelium discoideum [Biochem. Cell Biol. 68 (1990) 699]. Here, we found another stalk-specific WGA-binding protein, wst25, which was detected with two antisera that recognize wst34. Using the two marker proteins, we then analyzed and compared the pathways of prestalk-to-stalk maturation and prespore-to-stalk conversion in vitro and in vivo. Prestalk cells isolated from normally formed slugs can be converted to stalk cells (designated StI) in vitro with 8-bromo-cAMP (Br-cAMP), whereas prespore cells isolated from slugs can be converted to fully vacuolated stalk cells (designated StII) in vitro with Br-cAMP and DIF-1. During the process of prespore-to-stalk conversion, prespore-specific mRNAs, D19 and 2H3, disappeared rapidly, while prestalk-specific mRNAs, ecmA and ecmB, appeared at 2h of incubation and increased thereafter. Most importantly, however, the StII cells thus formed were biochemically different from the StI cells originated from prestalk cells; that is, StI cells expressed wst34 but not wst25, while StII cells expressed wst25 but not wst34. When prespore cells isolated from slugs were allowed to develop on a substratum, they differentiated into spores and stalk cells and formed fruiting bodies, and the stalk cells formed from prespore cells in vivo expressed wst25 but not wst34. The present results indicate that there are two types of stalk cells, StI (prestalk-origin) and StII (prespore-origin), and that wst34 and wst25 are the specific markers for StI and StII, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号