首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

2.
The generation of antibody secretory cells from resting B lymphocytes after immunization with most protein Ag requires B cell signaling by Ag, direct Th cell contact and lymphokines. Previous studies suggest that cell contact-mediated signals may be transduced by Ia after Ia binding by alpha beta TCR and/or CD4. Seemingly inconsistent with this concept are findings that cross-linking of Ia molecules on quiescent B cells leads to cAMP generation that is antagonistic for B cell mitogenesis. Here we show that ligand binding to IL-4 and Ag receptors on quiescent B cells induce transition of these cells into a competent state in which Ia molecules transduce signals via a distinct mechanism. This mechanism involves the tyrosine kinase-dependent activation of phospholipase C leading to Ca2+ mobilization from intracellular stores and the extracellular space. This competence, which is seen within 4 h of priming, is not simply a function of increased Ia expression by the B cell because the response can be induced by cross-linking of less than 5% of cell surface Ia molecules on primed cells. Finally, cross-linking of Ia molecules leads to more than fivefold greater increase in [Ca2+]i than is induced by membrane Ig ligation. These findings are consistent with alpha beta TCR/CD4 delivery via Ia of proliferative signals mediated by tyrosine kinase activation, phosphoinositide hydrolysis and Ca2+ mobilization.  相似文献   

3.
Although ligation of the CD3/TCR complex initiates an activation signal in T cells, additional costimulatory signals generated during cell-to-cell interactions with APC transduced via ligation of CD11a/CD18 and CD28 by their specific counter-receptor intercellular adhesion molecule (ICAM)-1 and B7, respectively, are required for optimal T cell proliferation and cytokine synthesis. Using soluble IgC gamma 1 fusion proteins of these costimulatory counter-receptors, we have recently shown that unactivated resting CD4+ T cells and Ag-primed CD4+ T cells differ in their response to the costimulation by ICAM-1 and B7. Preferential proliferative responses of resting T and Ag-primed T cells to ICAM-1 and B7, respectively, prompted us to speculate that ICAM-1-induced signals may regulate coupling of the CD28 signaling pathway. Furthermore, both B7 and ICAM-1 are co-expressed on APC and thus, may co-regulate activation-driven maturation of T cells. In this study, we have examined regulatory effects of IgC gamma 1 fusion proteins of B7, ICAM-1, and ICAM-2 (a homologue of ICAM-1) on each other's costimulation. We first demonstrate that TCR-directed costimulation of resting CD4+ T cells with ICAM-1 (ICAM-1 priming) but not ICAM-2 induces increased responsiveness to B7. Priming of CD4+ T cells with ICAM-1 induced higher expression of both CD18 and CD28 than that with either B7 or ICAM-2. Cross-linking of CD28 induced faster and significantly higher cytoplasmic free calcium mobilization response in ICAM-1-primed CD4+ T cells than in resting, B7-primed, or ICAM-2-primed CD4+ T cells. B7 synergized with ICAM-1 but not ICAM-2 to augment proliferative responses of not only resting CD4+ T cells but also those that had been primed with either ICAM. Unlike resting or ICAM-2-primed CD4+ T cells, ICAM-1-primed CD4+ T cells efficiently proliferated in response to the synergistic costimulation of B7 and ICAM-2. In contrast, both ICAM-1 and ICAM-2 inhibit B7-driven proliferation of Ag-primed CD4+ T cells. Thus, B7 and ICAM-1 exert contrasting regulatory effects on the proliferation of CD4+ T cells depending on their state of activation-induced maturation.  相似文献   

4.
Co-stimulation of B lymphocytes with IL-4 plus nonmitogenic concentrations of anti-Ig antibodies, or protein kinase C (PKC) activators, drives resting B cells into DNA synthesis. Although cross-linking of the sIg receptors provokes the generation of the intracellular second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, the molecular mechanism utilized by IL-4R in murine B cells has not, as yet, been defined. In human B cells IL-4 has been shown to induce a transient rise in IP3 followed by a sustained elevation of cAMP. However, in murine B cells, IL-4 does not induce the release of IP3, Ca2+ mobilization, PKC translocation, or indeed modify signaling via the phosphoinositide pathway induced by ligation of sIg receptors. We now present evidence that, in murine B cells, IL-4 synergizes with nonmitogenic concentrations of anti-Ig to provoke translocation of PKC from the cytosol to membranes. In addition, the lymphokine up-regulates PKC levels and activity and prevents phorbol ester-induced PKC down-regulation in B cells. We therefore propose that (unknown) signals generated via IL-4R potentiate and/or prolong sIg-induced PKC activation. These observations may therefore provide a biochemical basis for explaining how IL-4 and anti-Ig synergize to induce B cell activation.  相似文献   

5.
Cross-linking of CD45 induced capping and physical sequestration from CD22 leading to an increase in tyrosine phosphorylation of CD22 and SHP-1 recruitment. Additionally, CD22 isolated from a CD45-deficient B cell line exhibited increased basal/inducible tyrosine phosphorylation and enhanced recruitment of SHP-1 compared with CD22 isolated from CD45-positive parental cells. Subsequent experiments were performed to determine whether enhanced SHP-1 recruitment to CD22 is responsible for attenuation of receptor-mediated Ca2+ responses in CD45-deficient cells. Catalytically inactive SHP-1 expressed in CD45-deficient cells interacted with CD22 and decreased phosphatase activity in CD22 immunoprecipitates to levels that were comparable to those in CD45-positive cells. Expression of catalytically inactive SHP-1 restored intracellular mobilization of Ca2+ in response to MHC class II cross-linking, but did not affect B cell Ag receptor- or class II-mediated Ca2+ influx from the extracellular space. These results indicate that CD45 regulates tyrosine phosphorylation of CD22 and binding of SHP-1. The data further indicate that enhanced recruitment and activation of SHP-1 in CD45-deficient cells affect intracellular mobilization of Ca2+, but are not responsible for abrogation of receptor-mediated Ca2+ influx from the extracellular space.  相似文献   

6.
Ag-presenting cells provide at least two distinct signals for T cell activation. T cell receptor-dependent stimulation is provided by presentation of a specific peptide Ag in association with MHC molecules. In addition, APC also supply costimulatory signals required for T cell activation that are neither Ag- nor MHC restricted. One such costimulatory signal is mediated via the interaction of B7 on APC with the CD28 receptor on T cells. Recently, CTLA-4 has been shown to be a second B7 receptor on T cells. In the present report, we have examined the expression of CD28 and CTLA-4 on a panel of resting and activated normal T cell subsets and T cell clones by RNA blot analysis in an attempt to determine whether their expression defines reciprocal or overlapping subsets. CD28 was detected in resting T cells, whereas CTLA-4 was not. After stimulation with PHA and PMA for 24 h, CTLA-4 mRNA was expressed in both the CD4+ and CD8+ subsets as well as in CD28+ T cells. We examined 37 human and six murine T cell clones that had been previously characterized for their cytokine production. After activation, CTLA-4 and CD28 mRNA were coexpressed in 36 of 37 human T cell clones and all six murine T cell clones. These included T cells of CD4+8-, CD4-8+, and CD4-8- phenotypes as well as clones with Th1 and Th2 cytokine profiles. In contrast, CD28 but not CTLA-4 mRNA was detected in leukemic T cell lines and myelomas. CTLA-4 and B7 mRNA but not CD28 mRNA was detected in two long term HTLV-I-transformed T cell lines. These data demonstrate that CD28 and CTLA-4 mRNA are coexpressed in most activated T cells and T cell clones, providing evidence that they do not define reciprocal subsets. Moreover, they are consistent with the hypothesis that B7 transmits its signal through a single receptor, CD28, on resting T cells, and multiple receptors, CD28 and CTLA-4, on activated T cells.  相似文献   

7.
The major histocompatability class II heterodimer (class II) is expressed on the surface of both resting and activated B cells. Although it is clear that class II expression is required for Ag presentation to CD4(+) T cells, substantial evidence suggests that class II serves as a signal transducing receptor that regulates B cell function. In ex vivo B cells primed by Ag receptor (BCR) cross-linking and incubation with IL-4, or B cell lines such as K46-17 micromlambda, class II ligation leads to the activation of protein tyrosine kinases, including Lyn and Syk and subsequent phospholipase Cgamma-dependent mobilization of Ca(2+). In this study, experiments demonstrated reciprocal desensitization of class II and BCR signaling upon cross-linking of either receptor, suggesting that the two receptors transduce signals via common processes and/or effector proteins. Because class II and BCR signal transduction pathways exhibit functional similarities, additional studies were conducted to evaluate whether class II signaling is regulated by BCR coreceptors. Upon cross-linking of class II, the BCR coreceptors CD19 and CD22 were inducibly phosphorylated on tyrosine residues. Phosphorylation of CD22 was associated with increased recruitment and binding of the protein tyrosine phosphatase SHP-1. Similarly, tyrosine phosphorylation of CD19 resulted in recruitment and binding of Vav and phosphatidylinositol 3-kinase. Finally, co-cross-linking studies demonstrated that signaling via class II was either attenuated (CD22/SHP-1) or enhanced (CD19/Vav and phosphatidylinositol 3-kinase), depending on the coreceptor that was brought into close proximity. Collectively, these results suggest that CD19 and CD22 modulate class II signaling in a manner similar to that for the BCR.  相似文献   

8.
Although resting B cells are poor accessory cells for signals transmitted through the TCR/CD3 complex, we report that these B cells can support T cell proliferation when T cell activating signals are delivered through CD2. This was first suggested when leucine methyl ester treatment of PBMC abolished proliferation induced by anti-CD3, but not by the accessory cell-dependent anti-CD2 mAb combination, GT2 and OKT11. Then we demonstrated that unstimulated, resting B cells could support the proliferation of both CD4+ and CD8+ T cells. Aggregated IgG inhibited proliferation, suggesting that anti-CD2 mAb bound to T cells were cross-linked by attachment to B cell FcR. Two lines of evidence suggested that lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interaction was crucial for anti-CD2-induced proliferation. First, proliferation was blocked by mAb against these adhesion molecules. Second, intercellular adhesion molecule-1 expression rapidly increased on resting B cells after the addition of anti-CD2, but not anti-CD3. This was of interest because fixed monocytes, but not fixed B cells, were able to support the proliferative response. In contrast to lymphocyte function-associated Ag-1/intercellular adhesion molecule-1, CD28/B7 interaction was not required for anti-CD2-induced proliferation, although ligation of these molecules provided important costimulatory signals for stimulation by anti-CD3. Finally, neutralizing antibodies against IL-1 alpha, IL-1 beta, and IL-6 showed only modest inhibitory effects on T cell proliferation. The addition of IL-1 and/or IL-6 to T cells failed to substitute for accessory cells and were only partially effective with fixed B cells. Further evidence of a linkage between CD2 and CD45 isoforms was obtained. Anti-CD45RA, but not anti-CD45RO, potentiated anti-CD2-induced T cell proliferation. These studies have revealed a novel role for resting B cells as accessory cells and have documented costimulatory signals that are important for this effect. Because Ag-presentation by resting B cells to T cells generally leads to T cell nonresponsiveness, it is possible that this tolerogenic signal may be converted to an activation signal if there is concurrent perturbation of CD2 on T cells.  相似文献   

9.
Ly-6A/E is a phosphatidylinositol (PI)-linked membrane protein whose expression is induced or upregulated on normal murine T and B cells by IFN-gamma. Cross-linkage of Ly-6A/E expressed on normal murine T cells stimulates Ca2+ translocation, and in the presence of a protein kinase C (PKC) activator, lymphokine secretion, and cellular proliferation. Utilizing an anti-Ly-6A/E mAb, we studied the effect of cross-linking Ly-6A/E on IFN-gamma-treated resting B cells, for Ca2+ translocation, PI turnover, and cellular proliferation. Since these events are known to be stimulated by cross-linkage of B cell membrane (m)Ig, we compared the changes mediated through these respective membrane proteins. We show that cross-linkage of B cell Ly-6A/E stimulates a large, rapid, and sustained increase in the concentration of intracellular free calcium ([Ca2+]i) comparable in magnitude, though somewhat delayed, relative to that observed after cross-linking of mIg. Cross-linkage of B cell Ly-6A/E does not, however, stimulate detectable PI turnover, in contrast to PI turnover induced by ligation of mIg. Both the Ly-6A/E- and mIg-mediated increase in [Ca2+]i occur through mobilization of internal Ca2+ stores as well as entry of Ca2+ into the cell from the extracellular compartment. Ly-6A/E-mediated Ca2+ translocation appears to be under the regulation of PKC in that short term pretreatment of B cells with the PKC activator, PMA, inhibits the Ly-6A/E- as well as the mIg-mediated increase in [Ca2+]i, whereas prolonged exposure to PMA, under conditions that lead to depletion of PKC, results in an augmentation in Ca2+ translocation after ligation of either Ly-6A/E or mIg. Co-capping studies indicate that Ly-6A/E and mIg cap independently in the B cell membrane, thus suggesting that the Ly-6A/E-induced effects on Ca2+ translocation are not mediated through simultaneous modulation of mIg. Anti-Ly6A/E, by itself, does not stimulate an increase in [3H]thymidine incorporation by IFN-gamma-treated resting B cells, but induces a striking increase in the presence of PMA. By contrast, anti-Ig by itself stimulates significant increases in [3H]thymidine incorporation that is inhibited by PMA. Thus, Ly-6A/E is a potent mediator of B cell activation that may use a signal transduction system in quiescent B cells that is distinct from that of the Ag receptor.  相似文献   

10.
Anti-immunoglobulin antibodies (anti-Ig) can stimulate a majority of resting B cells via their receptor Ig. Evidence suggests that the signals generated after this ligand-receptor interaction may be transduced via hydrolysis of inositol phospholipids. In other systems, the ability of inositol phospholipid hydrolysis to link receptor-ligand interactions to subsequent activational events has been suggested to relate to the ability of metabolic intermediates of this hydrolytic process to facilitate activation of protein kinase C and mobilization of Ca+2. In this study, we investigated the importance of protein kinase C and Ca+2 mobilization in the signaling mechanism by which anti-Ig drives B cells to undergo G0 to G1 transition. Our results show that pharmacologic inhibition of either protein kinase C activity or channel-mediated Ca+2 influx completely abrogates the increase in RNA synthesis associated with B cell activation after stimulation by anti-Ig. This suggests that pathways leading to both protein kinase C activation and elevation of intracellular Ca+2 are critical for receptor Ig-mediated G0 to G1 transition. Furthermore, studies in which anti-Ig-induced signaling could be bypassed by directly facilitating Ca+2 mobilization and protein kinase C activation using Ca+2 ionophore and phorbol diester show that these events are sufficient to drive the majority of resting B cells into G1 in the absence of additional signaling from accessory cells or extra-cellular factors. However, like anti-Ig-induced stimulation, Ca+2 ionophore and phorbol diester are relatively inefficient in driving B cells that have entered G1 into S phase. We discuss the relevance of these results towards the transduction mechanism linking B cell membrane-associated Ig-generated signals with subsequent activation events.  相似文献   

11.
Imaging early steps of human T cell activation by antigen-presenting cells.   总被引:1,自引:0,他引:1  
In this work the Ca2+ response and the morphological changes elicited by Ag in human CD4+ T cells are described at the single cell level. The APC used to present the diphtheria toxoid Ag to a human diphtheria toxoid-specific T cell clone were murine L cell fibroblast transfectants expressing MHC class II molecules. The increase of the intracellular Ca2+ concentration, [Ca2+]i, which is one of the earliest steps of the response to TCR stimulation, was followed by fluorimetry with fura-2 on an imaging system. This response was a specific consequence of successful Ag presentation, because it only took place when fibroblasts expressed both class II MHC molecules and Ag. CD4 molecules were also involved in this intercellular interaction, because the Ca2+ response could be inhibited by preincubating the T cells with an anti-CD4 antibody. The response induced by APC started after a delay of at least 6 min, after which large Ca2+ oscillations took place, with a pseudo period of 100 s at 35 degrees C. The frequency of these oscillations decreased with temperature. The oscillations became progressively more damped during the first 30 to 40 min of cell-to-cell interaction, after which they completely stopped; however, [Ca2+]i remained well above its resting level for more than 1 h after the contact. The Ca2+ oscillations were entirely dependent on Ca2+ influx because they immediately disappeared when external calcium was removed. Similar oscillations were observed when the cells were stimulated with an anti-CD3 antibody. After stimulation with APC, many T cells abandoned their spherical shape and tended to flatten and elongate. This aspect of the T cell response was not observed after stimulation with an anti-CD3 antibody. In the presence of cytochalasin B, the morphologic changes elicited by the APC were blocked, whereas the Ca2+ response was slightly enhanced. However, when T cells were loaded with the Ca2+ chelator BAPTA, both Ca2+ and morphologic changes were inhibited, suggesting that the Ca2+ response plays a permissive role for the morphologic changes.  相似文献   

12.
We have measured Ca2+ mobilization in a panel of B lineage cell lines after stimulation with anti-Ig to assess whether membrane Ig transduces a functional signal in cells that are representative of immature, mature, or terminally differentiated stages. For these studies, three transfected cell lines which express the same IgM molecule (300-19 microns lambda 36/8, K46-17 microns lambda, and J558L microns lambda 3) as well as two lines expressing an identical IgD molecule (K46 delta m2.6 and J558L delta m8.8) were used. Cross-linking of membrane Ig on IgM+ or IgD+ lymphomas (K46-17 microns lambda or K46 delta m2.6) resulted in a Ca2+ mobilization response that is similar to that seen in mature, resting B cells. Both intracellular release and extracellular influx of Ca2+ were observed. In contrast, ligation of membrane Ig on an IgM+ pre-B cell line (300 - 19 microns lambda 36/8) induced extracellular influx of Ca2+ but no detectable intracellular release. Finally, cross-linking of membrane Ig on IgM+ or IgD+ plasmacytomas (J558L microns 3 or J558L delta m8.8) or an IgD+ B cell hybridoma (B1.8.delta 1) expressing an endogenous Ig gene, did not result in a detectable Ca2+ mobilization response. Importantly, stimulation of cells with the GTP-binding protein activator, aluminum fluoride, resulted in a comparable Ca2+ mobilization response in all cell lines. In view of the fact that aluminum fluoride induced a Ca2+ response in the terminally differentiated B cell lines, J558L microns 3, J558L delta m8.8, and B1.8.delta 1, it is likely that there is an alteration in the signal transduction cascade at some point proximal to GTP binding protein activation. This finding suggests that differentiation of the B cell is accompanied by the loss or alteration of one or more components that couple membrane Ig to subsequent signal transduction elements. Finally, it has previously been demonstrated that the IgM+ cell lines described above, express the recently described membrane Ig-associated protein, B34. Thus, it is apparent based on the fact that the J558L microns 3 cell line does not mobilize Ca2+ after stimulation with anti-Ig, that coexpression of B34 in association with membrane Ig does not constitute a functional receptor complex capable of activating GTP-binding proteins that in turn regulate Ca2+ mobilization.  相似文献   

13.
The effects of the cytokine IL-4 on resting and activated human B cells were compared with the effects of known "competence" signals able to drive resting B cells into the cell cycle, including anti-Ig, PMA, anti-CD20, and a recently described competence signal, anti-Bgp95. In proliferation assays, IL-4 was costimulatory with anti-Ig and anti-Bgp95 but not with anti-CD20 or PMA. IL-4 alone triggered increases in expression of class II DR/DQ and CD40, but it did not trigger increases in intracellular free calcium [Ca2+]i in resting B cells or induce resting B cells to leave G0 and enter the G1 phase of the cell cycle. Although IL-4 has some characteristics of competence signals, it was most effective if added to B cells up to 12 h after anti-Ig or anti-Bgp95 rather than before, and thus, in this respect, works more like a progression signal. Like IL-4, all four competence signals for B cells triggered increases in class II and CD40, but only IL-4 consistently induced increases in CD23 surface levels. IL-4 was costimulatory only with anti-Ig and anti-Bgp95, each of which can trigger increases in [Ca2+]i and new protein synthesis of the proto-oncogene c-myc, and can increase attachment of protein kinase C to the plasma membrane. IL-4 was not costimulatory with signals that 1) did not affect [Ca2+]i yet induced c-myc protein synthesis (anti-CD20), 2) only stimulated the translocation of protein kinase C (PMA), or 3) only stimulated increases in [Ca2+]i (calcium ionophore). These results suggest that resting human B cells require at least two intracytoplasmic signals before IL-4 can effectively promote B cell proliferation.  相似文献   

14.
T helper cell-dependent B cell activation.   总被引:6,自引:0,他引:6  
R J Noelle  E C Snow 《FASEB journal》1991,5(13):2770-2776
Small, resting B lymphocytes are driven into the cell cycle as a consequence of receiving multiple signals from elements found within their local environment. The first of these signals results from the binding of specific antigen to membrane immunoglobulin (mIg) receptors on the B cells. Pursuant to antigen binding, signals are transduced and the B cell commences to endocytose and degrade the antigen. Fragments of the antigen are expressed on the B cell surface in noncovalent association with class II major histocompatibility complex (MHC) molecules. The antigen-class II MHC complex serves as a recognition complex for CD4+ helper T cells (Th). As a consequence of recognition, Th form stable physical conjugates with the B cells. Over an extended period of time the Th and B cells bilaterally signal one another. This interchange of signals results in the growth and differentiation of both cells. This review will discuss the sequence of events that culminate in the growth and differentiation of B lymphocytes to antibody-producing cells.  相似文献   

15.
The Ag-specific interaction between cloned allospecific human Th cells and class II MHC determinants on the surface of allogeneic B cells induces a significant fraction of resting B cells to express a B cell specific activation Ag BLAST-2 (CD23). On the other hand, cross-linking of B cell surface Ig R by Ag analogues does not lead to BLAST-2 expression. By utilizing the BLAST-2 induction assay as a positive control for efficient Th-B cell interaction, we have investigated the biochemical basis of human B cell activation mediated by Ag and Th cells. Our data demonstrate that ligands for sIg R, including F(ab')2 goat anti-human IgM and Staphylococcus aureus protein A, stimulate the metabolism of B cell membrane inositol lipids as assessed by: 1) increased [3H]inositol phosphates formation in myo-[3H]inositol-labeled B cells; 2) selective incorporation of [32P]orthophosphate into phosphatidic acid and phosphatidylinositol, but not into phosphatidylethanolamine or phosphatidylcholine; and 3) rapid increase in B cell cytoplasmic ionized Ca2+ concentration ([Ca2+]i). In contrast, direct Th-B cell interaction leads to high intensity BLAST-2 expression on the B cell surface but this response is not mediated by changes in inositol lipid metabolism or [Ca2+]i. Further, Th-B cell interaction does not affect the changes in B cell inositol lipid metabolism or [Ca2+]i triggered by sIg cross-linking. Taken together, our results suggest that Ag and Th cells induce different functional B cell responses by activating distinct second messenger systems within the B cell.  相似文献   

16.
The influence of the pathway of Ag uptake and processing on MHC class II (CII)-mediated B cell function is unknown. In this study, we investigate in resting and activated (via the BCR or CD40) B cells the biological properties of CII-peptide complexes (CII-peptide) generated by either the BCR-mediated Ag processing (type I complex) or fluid phase Ag processing (type II complex). Compared with type I complex, ligation of type II complex by either specific Ab or the TCR in Ag-presenting assay results in significant decreases in B cell survival rate (50-100%) and expression levels of CII, CD86, and CD54. Loss of B cells following ligation of type II complex occurs in the presence of a comparatively good level of specific CD4(+) T cell division, indicating that B cell loss is a late event following T cell stimulation. Comparative analysis of T and B cell conjugates after Ab ligation of type I or II complex reveals decreased efficiency of the latter in forming conjugates. Neither initial differential levels of CII and other studied surface markers, B cell type inherent differences, BCR signaling, T cell proliferation, nor initial density of CII-peptide complexes could explain the T cell-induced B cell loss. We propose that the context in which CII-peptide complexes are present in the membrane following BCR uptake and processing leads to B cell survival. Thus, appropriate targeting of Ag ensures generation of relevant immune responses.  相似文献   

17.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   

18.
19.
B cells are induced to express CD95 upon interaction with T cells. This interaction renders the B cells sensitive to CD95-mediated apoptosis, but ligation of proviability surface receptors is able to inhibit apoptosis induction. MHC class II is a key molecule required for Ag presentation to Th cells, productive T cell-B cell interaction, and B cell activation. We demonstrate here for the first time that MHC class II ligation also confers a rapid resistance to CD95-induced apoptosis, an affect that does not require de novo protein synthesis. Signaling through class II molecules blocks the activation of caspase 8, but does not affect the association of CD95 and Fas-associated death domain-containing protein. MHC class II ligation thus blocks proximal signaling events in the CD95-mediated apoptotic pathway.  相似文献   

20.
A precise knowledge of the early events inducing maturation of resting microglia into a competent APC may help to understand the involvement of this cell type in the development of CNS immunopathology. To elucidate whether signals from preactivated T cells are sufficient to induce APC features in resting microglia, microglia from the adult BALB/c mouse CNS were cocultured with Th1 and Th2 lines from DO11.10 TCR transgenic mice to examine modulation of APC-related molecules and Ag-presenting capacity. Upon Ag-specific interaction with Th1, but not Th2, cells, microglia strongly up-regulated the surface expression of MHC class II, CD40, and CD54 molecules. Induction of CD86 on mouse microglia did not require T cell-derived signals. Acutely isolated adult microglia stimulated Th1 cells to secrete IFN-gamma and, to a lesser extent, IL-2, but were inefficient stimulators of IL-4 secretion by Th2 cells. Microglia exposed in vitro to IFN-gamma showed enhanced expression of MHC class II, CD40, and CD54 molecules and became able to restimulate Th2 cells. In addition to IFN-gamma, GM-CSF increased the ability of microglia to activate Th1, but not Th2, cells without up-regulating MHC class II, CD40, or CD54 molecules. These results suggest that interaction with Th1 cells and/or Th1-secreted soluble factors induces the functional maturation of adult mouse microglia into an APC able to sustain CD4+ T cell activation. Moreover, GM-CSF, a cytokine secreted by T cells as well as reactive astrocytes, could prime microglia for Th1-stimulating capacity, possibly by enhancing their responsiveness to Th1-derived signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号