首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) haplotypes usually are assumed to be neutral, unselected markers of evolving female lineages. This assumption was tested by monitoring haplotype frequencies in 12 experimental populations of Drosophila pseudoobscura which were polymorphic for mtDNA haplotypes. Populations were maintained for at least 10 generations, and in one case for 32 generations, while tests of mtDNA selective neutrality were conducted. In an initial population, formed from a mixture of two strains with different mitochondrial haplotypes, the frequency of the Bogota haplotype increased 46% in 3 generations, reaching an apparent equilibrium frequency of 82% after 32 generations. Perturbation of this equilibrium by addition of the less common haplotype resulted in a rapid, dramatic increase in frequency of the second haplotype, and a return to essentially the same equilibrium frequency as before perturbation. This behavior is not consistent with mtDNA neutrality, nor is the equilibrium consistent with a simple model of constant selection on the haploid mtDNAs. Replicate cage experiments with mtDNA haplotypes did not always generate the same result as the initial cage. Several lines of evidence, including manipulations of the nuclear genome, support the idea that both nuclear and mitochondrial genomes are involved in the dramatic mtDNA frequency changes. In another experiment, strong female viability selection was implicated via mtDNA frequency changes. Although the causes of the dramatic mtDNA frequency changes in our populations are not obvious, it is clear that Drosophila mitochondrial haplotypes are not always simply neutral markers. Our findings are relevant to the introduction of a novel mtDNA variant from one species or one population into another. Such introductions could be strongly favored by selection, even if it is sporadic.  相似文献   

2.
The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very low frequencies. There is no statistical evidence of positive Darwinian selection acting on the mitochondrial DNA variants according to Tajima''s neutrality test. Two experimental populations, with one replicate each, were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. Both populations were started with the two most frequent mitochondrial haplotypes, but at different initial frequencies. After 13 to 16 generations, haplotype II reached fixation in three cages and its frequency was 0.89 by generation 25 in the fourth cage. Random drift can be rejected as the force responsible for the observed changes in haplotype frequencies. There is not only statistical evidence of a linear trend favoring a mtDNA (haploid) fitness effect, but also of a significant nonlinear deviation that could be due to a nuclear component.  相似文献   

3.
Statistical tests of genetic drift and of the neutrality of mtDNA are presented using empirical time‐series data on multi‐generational changes in cytonuclear disequilibria within replicated experimental hybrid populations of two species of live‐bearing Poeciliid fishes (Gambusia holbrooki and G.affinis) which were monitored over a period of two years (three generations). Cytonuclear disequilibria D and D (which measure departures from random associations of cytoplasmic and nuclear genotypes) over the three generations of the experiment were non‐zero for all replicate populations. For each of five nuclear loci, the observed measures of D and D were highly concordant between replicates during each generation. Significant departures from expectations were observed after one and two generations. A statistical measure of goodness of fit of observed changes in cytonuclear disequilibria (and implicitly of the neutrality of the mtDNA markers) was calculated for each nuclear locus. When the results for the replicates were combined into an overall test of neutrality, the fit to the random union of zygotes (RUZ) model was rejected for four of the five nuclear loci (P < 0.05). A simple genetic drift model does not explain the temporal changes in composite cytonuclear genotypic frequencies. Frequencies of parental G. holbrooki mitochondrial alleles and nuclear genotypes exceeded expected values during most time periods, implying some selective advantage of offspring produced by G. holbrooki females. Expansion of cytonuclear models to explicitly address questions of genetic drift and neutrality have general relevance to studies of natural populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
S. Kambhampati  K. S. Rai    D. M. Verleye 《Genetics》1992,132(1):205-209
A laboratory cage experiment was undertaken to study changes over time in the frequencies of two mitochondrial DNA (mtDNA) haplotypes in the mosquito, Aedes albopictus, under two conditions: bidirectionally compatible matings and unidirectionally incompatible matings. Frequencies were monitored for 10 generations in three replicate cages for each of the two conditions above. In cages with bidirectionally compatible strains, changes in haplotype frequencies were nondirectional and neither haplotype increased in frequency. Statistical analysis of relative proportions of the two haplotypes in each generation indicated that the magnitude of the observed fluctuations could be expected under an assumption of random genetic drift alone. In cages with unidirectionally incompatible matings, mtDNA of females that lay inviable eggs upon mating with males of another strain, decreased significantly in the F1 generation and was completely replaced in the F2 generation.  相似文献   

5.
We examined mtDNA and nuclear allozyme genotypes in hybrid populations formed from interbreeding of westslope cutthroat trout (Oncorhynchus clarki lewisi) and Yellowstone cutthroat trout (O. c. bouvieri). These subspecies show substantial genetic divergence (Nei's D = 0.30; mtDNA P = 0.02). Diagnostic alleles at multiple nuclear loci and two distinct mtDNA haplotypes segregate in the hybrids. Nuclear and mtDNA genotypes are largely randomly associated, although there is slight disequilibrium in both nuclear and cytonuclear measures in some samples. Consistent positive gametic disequilibria for three pairs of nuclear loci confirm one previously reported linkage, and indicate two more. Allele frequencies provide no evidence for selection on individual chromosome segments. However, westslope mtDNA haplotype frequencies exceed westslope nuclear allele frequencies in all samples. This may be explained by differences in the frequency of occurrence of reciprocal F1 matings, by viability, fertility, or sex ratio differences in the progeny of reciprocal matings, or by weak selection on mtDNA haplotypes.  相似文献   

6.
Mitochondrial genes generally show high levels of standing genetic variation, which is puzzling given the accumulating evidence for phenotypic effects of mitochondrial genetic variation. Negative frequency‐dependent selection, where the relative fitness of a genotype is inversely related to its frequency in a population, provides a potent and potentially general process that can maintain mitochondrial polymorphism. We assessed the change in mitochondrial haplotype frequencies over 10 generations of experimental evolution in 180 seed beetle populations in the laboratory, where haplotypes competed for propagation to subsequent generations. We found that haplotypes consistently increased in frequency when they were initially rare and decreased in frequency when initially common. Our results have important implications for the use of mtDNA haplotype frequency data to infer population level processes and they revive the general hypothesis that negative frequency‐dependent selection, presumably caused by habitat heterogeneity, may commonly promote polymorphism in ecologically relevant life history genes.  相似文献   

7.
E. Arnason 《Genetics》1991,129(1):145-168
A perturbation-reperturbation tests selective neutrality of 100/100/100/100/100 and 106/100/100/100/100, the two most common alleles at the highly polymorphic X-linked locus Esterase-5 in Drosophila pseudoobscura. A total of 22 replicate populations are set up in cages, 11 start at a high frequency of 76% (U) and 11 at a low frequency of 21% (N) of the 106 allele. Allele frequencies change directionally and decrease in both U and N populations as groups and reach equilibria of 60 and 14%, respectively, after 200-300 days. These changes suggest natural selection. A hypothesis of balancing selection accounts for the pattern and predicts a dynamic equilibrium. A rival neutral hypothesis accounts for the pattern equally well by postulating hitchhiking and breakup of linkage leaving the Est-5 variants to drift at neutral equilibria. A reperturbation of allele frequencies in each population, creating 22 additional reperturbed populations EN and EU, with the original populations as controls, directly addresses the question of balancing selection or hitchhiking and breakup of linkage effects. Allele frequencies do not change directionally among the reperturbed populations as a group. The hypothesis of balancing selection is rejected in favor of the hypothesis of initial hitchhiking and dissipated linkage effects. The power of the experimental design to detect selection is studied by simulation. Within the limits of power set by the design, it is concluded that the 100 and 106 are iso-fitness alleles of Est-5 under the environmental conditions of the laboratory populations. The requirements of a method of perturbation and reperturbation are discussed.  相似文献   

8.
R. W. Chapman 《Genetics》1989,123(2):399-404
A population of bluegill sunfish, Lepomis macrochirus, was introduced into three man-made ponds in 1966. Analyses of these ponds in 1984 and 1985 found significant mtDNA divergence without nuclear gene differentiation. The difference between nuclear gene and mtDNA measures of interpopulational divergence was very large and suggests that sexual asymmetries in life histories may be important considerations in mtDNA and nuclear gene rates of divergence. The rapid divergence of mtDNA haplotype frequencies suggests that sorting of previously existing variation may accelerate mtDNA divergence among recently isolated populations.  相似文献   

9.
C. M. Hutter  D. M. Rand 《Genetics》1995,140(2):537-548
A test for coadaptation of nuclear and mitochondrial genomes was performed using the sibling species, Drosophila pseudoobscura and D. persimilis. Two lines of flies with ``disrupted' cytonuclear genotypes were constructed by repeated backcrossing of males from one species to females carrying mitochondrial DNA (mtDNA) from the other species. Each ``disrupted' strain was competed in population cages with the original stock of each species from which the recurrent males were obtained during the backcrossing. As such, the two species' mitochondrial types were competed reciprocally in the nuclear genetic environments of each species. The trajectories of mtDNA haplotypes were followed in discrete-generation population cages using a PCR-four-cutter approach. A significant increase in the frequency of D. pseudoobscura mtDNA was observed in each of four replicate cages with a D. pseudoobscura nuclear background. In the D. persimilis nuclear background, one cage actually showed an increase in frequency of D. pseudoobscura mtDNA, although together the four replicate cages show little change in frequency. These results were repeated after frequency perturbations and reinitiation of each cage. An analysis of fitness components revealed that fertility selection greatly outweighed viability selection in these cytonuclear competition experiments. The asymmetry of the fitnesses of the mtDNA haplotypes on the two genetic backgrounds is consistent in direction with the previously reported asymmetry of female fertility in backcrosses between these two species. While our experiments do not allow us to identify mtDNA as the sole source of fitness variation, at a minimum the data indicate a fitness association between nuclear fertility factors and the D. pseudoobscura mtDNA on its own genetic background.  相似文献   

10.
The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Calvià (Majorca, Balearic Islands, Spain). This population, like others founded in Europe, is characterized by the presence of 2 very common (>95%) mitochondrial haplotypes (named I and II) and rare and endemic haplotypes that appear at very low frequencies. Four experimental populations were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. The populations were started with haplotypes I and II at an initial frequency of 50% each. After 33 generations, the 2 haplotypes coexisted. Random drift could be rejected as the only force responsible for the observed changes in haplotype frequencies. A slight but significant linear trend favouring a mtDNA (haploid) fitness effect has been detected, with a nonlinear deviation that could be due to a nuclear component. An analysis of chromosomal arrangements was made before the foundations of the cages and at generation 23. Our results indicated that the hypothesis that the maintenance of the frequencies of haplotypes I and II in natural populations could be due to their association with chromosomal arrangements remains controversial.  相似文献   

11.
Crosses between populations of the copepod Tigriopus californicus typically result in outbreeding depression. In this study, replicate hybrid populations were initiated with first generation backcross hybrids between two genetically distinct populations from California: Royal Palms (RP) and San Diego (SD). Reciprocal F(1) were backcrossed to SD, resulting in expected starting frequencies of 25% RP/75% SD nuclear genes on either a pure RP cytoplasmic or a pure SD cytoplasmic background. After 1 year of hybridization (up to 15 generations), seven microsatellite loci were scored in two replicates on each cytoplasmic background. Frequencies of the rarer RP alleles increased significantly in all four replicates, regardless of cytoplasmic source, producing a mean hybridity of 0.97 (maximum = 1), instead of the expected 0.50. Explicit tests for heterozygote excess across loci and replicates showed significant deviations. Only the two physically linked markers showed linkage disequilibrium in all replicates. Subsequent fitness assays in parental populations and early generation hybrids revealed lower fitness in RP than SD, and significant F(2) breakdown. Computer simulations showed that selection must be invoked to explain the shift in allele frequencies. Together, these results suggest that hybrid inferiority in early generations gave way to hybrid superiority in later generations.  相似文献   

12.
Mitochondrial DNA Transmission Genetics in Crickets   总被引:20,自引:11,他引:9       下载免费PDF全文
This paper presents the results of a single generation study of the transmission genetics of mitochondrial DNA in the field cricket Gryllus firmus. In this species, individuals heteroplasmic for at least two different-sized mitochondrial genomes can be collected easily from natural populations. The frequencies of mtDNA size variants in heteroplasmic females and samples of their offspring were estimated by densitometry of autoradiographs. The variance in mitochondrial genotype frequencies among the offspring of heteroplasmic females indicates that, through genetic drift, fixation would take several hundred animal generations. Differences between the observations and data on mtDNA transmission in yeast and cows are discussed in light of the differences in organelle sampling regime and early developmental events in these species. Our data also show shifts in genotype frequencies in the transmission from mother to offspring that suggest a bias in favor of smaller genomes. The nature of mtDNA size variation in natural populations of crickets is discussed in reference to a mutation-selection balance.  相似文献   

13.
Mitochondria play a key role in ageing. The pursuit of genes that regulate variation in life span and ageing have shown that several nuclear‐encoded mitochondrial genes are important. However, the role of mitochondrial encoded genes (mtDNA) is more controversial and our appreciation of the role of mtDNA for the evolution of life span is limited. We use replicated lines of seed beetles that have been artificially selected for long or short life for >190 generations, now showing dramatic phenotypic differences, to test for a possible role of mtDNA in the divergent evolution of ageing and life span. We show that these divergent selection regimes led to the evolution of significantly different mtDNA haplotype frequencies. Selection for a long life and late reproduction generated positive selection for one specific haplotype, which was fixed in most such lines. In contrast, selection for reproduction early in life led to both positive selection as well as negative frequency‐dependent selection on two different haplotypes, which were both present in all such lines. Our findings suggest that the evolution of life span was in part mediated by mtDNA, providing support for the emerging general tenet that adaptive evolution of life‐history syndromes may involve mtDNA.  相似文献   

14.
The domestic dog mitochondrial DNA (mtDNA)‐gene pool consists of a homogenous mix of haplogroups shared among all populations worldwide, indicating that the dog originated at a single time and place. However, one small haplogroup, subclade d1, found among North Scandinavian/Finnish spitz breeds at frequencies above 30%, has a clearly separate origin. We studied the genetic and geographical diversity for this phylogenetic group to investigate where and when it originated and whether through independent domestication of wolf or dog‐wolf crossbreeding. We analysed 582 bp of the mtDNA control region for 514 dogs of breeds earlier shown to harbour d1 and possibly related northern spitz breeds. Subclade d1 occurred almost exclusively among Swedish/Finnish Sami reindeer‐herding spitzes and some Swedish/Norwegian hunting spitzes, at a frequency of mostly 60–100%. Genetic diversity was low, with only four haplotypes: a central, most frequent, one surrounded by two haplotypes differing by an indel and one differing by a substitution. The substitution was found in a single lineage, as a heteroplasmic mix with the central haplotype. The data indicate that subclade d1 originated in northern Scandinavia, at most 480–3000 years ago and through dog‐wolf crossbreeding rather than a separate domestication event. The high frequency of d1 suggests that the dog‐wolf hybrid phenotype had a selective advantage.  相似文献   

15.
The genetic relationships between two Finno-Ugric-speaking populations, the Finns and the Finnish Saami (Lapps), were studied by using PCR for six nuclear-DNA marker loci, mitochondrial restriction-site polymorphism, and sequence variation of a 360-bp segment of the mitochondrial control region. The allele frequencies of each of the nuclear-DNA marker loci and the frequencies of mtDNA restriction haplotypes were significantly different between the populations. The Saami showed exceptionally low variation in their mtDNA restriction sites. The 9-bp deletion common in East Asian populations was not observed, nor did the haplotype data fit into the haplogroup categorization of Torroni et al. The average number of nucleotide substitutions from the mtDNA haplotype data indicated that the Finnish Saami may be closer to the Finns than to the other reference populations, whereas nuclear DNA suggested that the Finns are more closely related to the European reference populations than to the Finnish Saami. The similarity of the Finns to the other Europeans was even more pronounced according to the sequence data. We were unable to distinguish between the Finns and either the Swiss or Sardinian reference populations, whereas the Finnish Saami clearly stood apart. The Finnish Saami are distinct from other Circumarctic populations, although two of the lineages found among the Saami showed closer relationship to the Circumarctic than to the European lineages. The sequence data indicated an exceptionally high divergence for the Saami mtDNA control lineages. The distribution of the pairwise nucleotide differences in the Saami suggested that this population has not experienced an expansion similar to what was indicated for the Finns and the reference populations.  相似文献   

16.
The weta Hemideina maori occurs as yellow (to the north), black (to the south) and intermediate colour variants on the Rock and Pillar range in New Zealand. Isozyme electrophoresis revealed little genetic variation, whereas RFLP analysis of an amplified mtDNA sequence uncovered two haplotypes correlating completely with colour in allopatry and nearly so in sympatry. Intermediates had one or other haplotype. The observed distribution of colour variation and mtDNA genotypes is characteristic of a hybrid zone, perhaps formed by secondary contact. Work is continuing to locate nuclear DNA markers and to study the genetic interactions of the colour variants.  相似文献   

17.
Elevated homocysteine is a risk factor for many complex disorders. The role of methylenetetrahydrofolate reductase (MTHFR) gene in methylation of homocysteine makes it one of the most important candidate genes for these disorders. Considering the heterogeneity in its distribution in world populations, we screened MTHFR C677T and A1298C single nucleotide polymorphisms in a total of 23 Indian caste, tribal and religious population groups from five geographical regions of India and belonging to four major linguistic groups. The frequencies of MTHFR 677T and 1298C alleles were found to be 10.08 and 20.66%, respectively. MTHFR homozygous genotype 677TT was absent in eight population groups and homozygous 1298CC was absent in two population groups. 677T allele was found to be highest among north Indian populations with Indo-European tongue and 1298C was high among Dravidian-speaking tribes of east India and south India. The less common mutant haplotype 677T-1298C was observed among seven population groups and overall the frequency of this haplotype was 0.008, which is similar to that of African populations. cis configuration of 677T and 1298C was 0.94%. However, we could not find any individual with four mutant alleles which supports the earlier observation that presence of more than two mutant alleles may decrease the viability of foetus and possibly be a selective disadvantage in the population.  相似文献   

18.
The maternally inherited mitochondrial genome (mtDNA) is present in multimeric form within cells and harbors sequence variants (heteroplasmy). While a single mtDNA variant at high load can cause disease, naturally occurring variants likely persist at low levels across generations of healthy populations. To determine how naturally occurring variants are segregated and transmitted, we generated a mini-pig model, which originates from the same maternal ancestor. Following next-generation sequencing, we identified a series of low-level mtDNA variants in blood samples from the female founder and her daughters. Four variants, ranging from 3% to 20%, were selected for validation by high-resolution melting analysis in 12 tissues from 31 animals across three generations. All four variants were maintained in the offspring, but variant load fluctuated significantly across the generations in several tissues, with sex-specific differences in heart and liver. Moreover, variant load was persistently reduced in high-respiratory organs (heart, brain, diaphragm, and muscle), which correlated significantly with higher mtDNA copy number. However, oocytes showed increased heterogeneity in variant load, which correlated with increased mtDNA copy number during in vitro maturation. Altogether, these outcomes show that naturally occurring mtDNA variants segregate and are maintained in a tissue-specific manner across generations. This segregation likely involves the maintenance of selective mtDNA variants during organogenesis, which can be differentially regulated in oocytes and preimplantation embryos during maturation.  相似文献   

19.
The Japanese mouse, Mus musculus molossinus, has long been considered an independent subspecies of the house mouse. A survey of restriction- site haplotypes of mitochondrial DNA (mtDNA) showed that Japanese mice have two main maternal lineages. The most common haplotype is closely related to the mtDNA of the European subspecies M. m. musculus. The other common haplotype and two minor ones are closely related to each other and to the mtDNA of an Asiatic subspecies, M. m. castaneus. Two other rare variants are probably the result of recent contamination by European M. m. domesticus. The musculus type of mtDNA is found in the southern two-thirds of Japan, whereas the common castaneus type is found in the northern third and the minor variants are found sporadically throughout Japan. The castaneus mtDNA lineage had a few minor variants, whereas the musculus lineage was completely monomorphic. By contrast, the native population of M. m. castaneus and the Chinese and Korean musculus populations were highly polymorphic. These results suggest that M. m. molossinus is a hybrid between ancestral colonies, possibly very small, of M. m. musculus and M. m. castaneus, rather than an independent subspecies.   相似文献   

20.
Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号