共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the molecular basis of energy transduction by myosin as a molecular motor, a fluorescent ribose-modified ATP analog 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ATP (NBD-ATP), was utilized to study the conformational change of the myosin motor domain during ATP hydrolysis using the fluorescence resonance energy transfer (FRET) method. The FRET efficiency from the fluorescent probe, BD- or AD-labeled at the reactive cysteine residues, SH1 (Cys 707) or SH2 (Cys697), respectively, to the NBD fluorophore in the ATP binding site was measured for several transient intermediates in the ATPase cycle. The FRET efficiency was greater than that using NBD-ADP. The FRETs for the myosin.ADP.AlF4- and myosin.ADP.BeFn ternary complexes, which mimic the M*.ADP.P(i) state and M.ATP state in the ATPase cycle, respectively, were similar to that of NBD-ATP. This suggests that both the SH1 and SH2 regions change their localized conformations to move closer to the ATPase site in the M*.ATP state and M**.ADP.P(i) state than in the M*.ADP state. Furthermore, we measured energy transfer from BD in the essential light chain to NBD in the active site. Assuming the efficiency at different states, myosin adopts a conformation such that the light chain moves closer to the active site by approximately 9 A during the hydrolysis of ATP. 相似文献
2.
Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis 总被引:6,自引:0,他引:6
We have measured the conventional electron paramagnetic resonance (EPR) spectrum of spin-labeled myosin filaments as a function of the nucleotide occupancy of the active site of the enzyme. The probe used was 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (IASL), which reacts specifically with sulfhydryl 1 of the myosin head. In the absence of nucleotide, the probe remains strongly immobilized (rigidly attached to the myosin head) so that no nanosecond rotational motions are detectable. When MgADP is added to IASL-labeled myosin filaments (T = 20 degrees C), the probe mobility increases slightly. During steady-state MgADP hydrolysis (T = 20 degrees C), the probe undergoes large-amplitude nanosecond rotational motion. These results are consistent with previous studies of myosin monomers, heavy meromyosin, and myosin subfragment 1. Isoclinic points observed in overlays of sequential EPR spectra recorded during ATP hydrolysis strongly suggest that the probes fall into two motional classes, separated by approximately an order of magnitude in effective rotational correlation time. Both of the observed states are distinct from the conformation of myosin in the absence of nucleotides, and the spectrum of the less mobile population is indistinguishable from that observed in the presence of MgADP. The addition of ADP and vanadate to IASL-myosin gives rise to two motional classes virtually identical with those observed in the presence of ATP, but the relative concentrations of the spin populations are significantly different. We have quantitated the percentage of myosin in each motional state during ATP hydrolysis. The result agrees well with the predicted percentages in the two predominant chemical states in the myosin ATPase cycle. Spectra obtained in the presence of nucleotide analogues permit us to assign the conformational states to specific chemical states. We propose that the two motional classes represent two distinct local conformations of myosin that are in exchange with one another during the ATP hydrolysis reaction cycle. 相似文献
3.
Conventional myosin is representative of biomolecular motors in which the hydrolysis of adenosine triphosphate (ATP) is coupled to large-scale structural transitions both in and remote from the active site. The mechanism that underlies such “mechanochemical coupling,” especially the causal relationship between hydrolysis and allosteric structural changes, has remained elusive despite extensive experimental and computational analyses. In this study, using combined quantum mechanical and molecular mechanical simulations and different conformations of the myosin motor domain, we provide evidence to support that regulation of ATP hydrolysis activity is not limited to residues in the immediate environment of the phosphate. Specifically, we illustrate that efficient hydrolysis of ATP depends not only on the proper orientation of the lytic water but also on the structural stability of several nearby residues, especially the Arg238-Glu459 salt bridge (the numbering of residues follows myosin II in Dictyostelium discoideum) and the water molecule that spans this salt bridge and the lytic water. More importantly, by comparing the hydrolysis activities in two motor conformations with very similar active-site (i.e., Switches I and II) configurations, which distinguished this work from our previous study, the results clearly indicate that the ability of these residues to perform crucial electrostatic stabilization relies on the configuration of residues in the nearby N-terminus of the relay helix and the “wedge loop.” Without the structural support from those motifs, residues in a closed active site in the post-rigor motor domain undergo subtle structural variations that lead to consistently higher calculated ATP hydrolysis barriers than in the pre-powerstroke state. In other words, starting from the post-rigor state, turning on the ATPase activity requires not only displacement of Switch II to close the active site but also structural transitions in the N-terminus of the relay helix and the “wedge loop,” which have been proposed previously to be ultimately coupled to the rotation of the converter subdomain 40 Å away. 相似文献
4.
As the intracellular part of maltose transporter, MalK dimer utilizes the energy of ATP hydrolysis to drive protein conformational change, which then facilitates substrate transport. Free energy evaluation of the complete conformational change before and after ATP hydrolysis is helpful to elucidate the mechanism of chemical‐to‐mechanical energy conversion in MalK dimer, but is lacking in previous studies. In this work, we used molecular dynamics simulations to investigate the structural transition of MalK dimer among closed, semi‐open and open states. We observed spontaneous structural transition from closed to open state in the ADP‐bound system and partial closure of MalK dimer from the semi‐open state in the ATP‐bound system. Subsequently, we calculated the reaction pathways connecting the closed and open states for the ATP‐ and ADP‐bound systems and evaluated the free energy profiles along the paths. Our results suggested that the closed state is stable in the presence of ATP but is markedly destabilized when ATP is hydrolyzed to ADP, which thus explains the coupling between ATP hydrolysis and protein conformational change of MalK dimer in thermodynamics. Proteins 2017; 85:207–220. © 2016 Wiley Periodicals, Inc. 相似文献
5.
6.
Xiao M Reifenberger JG Wells AL Baldacchino C Chen LQ Ge P Sweeney HL Selvin PR 《Nature structural biology》2003,10(5):402-408
Conformational changes within myosin lead to its movement relative to an actin filament. Several crystal structures exist for myosin bound to various nucleotides, but none with bound actin. Therefore, the effect of actin on the structure of myosin is poorly understood. Here we show that the swing of smooth muscle myosin lever arm requires both ADP and actin. This is the first direct observation that a conformation of myosin is dependent on actin. Conformational changes within myosin were monitored using fluorescence resonance energy transfer techniques. A cysteine-reactive probe is site-specifically labeled on a 'cysteine-light' myosin variant, in which the native reactive cysteines were removed and a cysteine engineered at a desired position. Using this construct, we show that the actin-dependent ADP swing causes an 18 A change in distance between a probe on the 25/50 kDa loop on the catalytic domain and a probe on the regulatory light chain, corresponding to a 23 degrees swing of the light-chain domain. 相似文献
7.
Myosin is an ATP-hydrolyzing motor that is critical in muscle contraction. It is well established that in the hydrolysis that it catalyzes a water molecule attacks the gamma-phosphate of an ATP bound to its active site, but the details of these events have remained obscure. This is mainly because crystallographic search has not located an obvious catalytic base near the vulnerable phosphate. Here we suggest a means whereby this dilemma is probably overcome. It has been shown [Fisher, A. J., et al. (1995) Biochemistry 34, 8960-8972; Smith, C. A., and Rayment, I. (1996) Biochemistry 35, 5404-5417] that in an early event, Arg-247 and Glu-470 come together into a "salt-bridge". We suggest that in doing so they also position and orient two contiguous water molecules; one of these becomes the lytic water, perfectly poised to attack the bound gamma-phosphorus. Its hydroxyl moiety attacks the phosphorus, and the resulting proton transfers to the second water, converting it into a hydronium ion (as is experimentally observed). It is shown in this article how these central events of the catalysis are consistent with the behavior of several residues of the neighboring region. 相似文献
8.
Coupling of protein surface hydrophobicity change to ATP hydrolysis by myosin motor domain. 总被引:1,自引:0,他引:1 下载免费PDF全文
M Suzuki J Shigematsu Y Fukunishi Y Harada T Yanagida T Kodama 《Biophysical journal》1997,72(1):18-23
Dielectric spectroscopy with microwaves in the frequency range between 0.2 and 20 GHz was used to study the hydration of myosin subfragment 1 (S1). The data were analyzed by a method recently devised, which can resolve the total amount of water restrained by proteins into two components, one with a rotational relaxation frequency (fc) in the gigahertz region (weakly restrained water) and the other with lower fc (strongly restrained water). The weight ratio of total restrained water to S1 protein thus obtained (0.35), equivalent to 2100 water molecules per S1 molecule, is not much different from the values (0.3-0.4) for other proteins. The weakly restrained component accounts for about two-thirds of the total restrained water, which is in accord with the number of water molecules estimated from the solvent-accessible surface area of alkyl groups on the surface of the atomic model of S1. The number of strongly restrained water molecules coincides with the number of solvent-accessible charged or polar atoms. The dynamic behavior of the S1-restrained water during the ATP hydrolysis was also examined in a time-resolved mode. The result indicates that when S1 changes from the S1.ADP state into the S1.ADP.P1 state (ADP release followed by ATP binding and cleavage), about 9% of the weakly restrained waters are released, which are restrained again on slow P1 release. By contrast, there is no net mobilization of strongly restrained component. The observed changes in S1 hydration are quantitatively consistent with the accompanying large entropy and heat capacity changes estimated by calorimetry (Kodama, 1985), indicating that the protein surface hydrophobicity change plays a crucial role in the enthalpy-entropy compensation effects observed in the steps of S1 ATP hydrolysis. 相似文献
9.
10.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place. 相似文献
11.
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis. 相似文献
12.
Binding of myosin to actin in myofibrils during ATP hydrolysis 总被引:4,自引:0,他引:4
Measurements of cross-bridge attachment to actin in myofibrils during ATP hydrolysis require prior fixation of myofibrils to prevent their contraction. The optimal cross-linking of myofibrils was achieved by using 10 mM carbodiimide (EDC) under rigor conditions and at 4 degrees C. The fixed myofibrils had elevated MgATPase activity (150%) and could not contract. As judged by chymotryptic digestions and subsequent SDS gel electrophoresis analysis, less than 25% of myosin heads were cross-linked in these myofibrils. The isolated, un-cross-linked myosin heads showed pH-dependent Ca2+- and EDTA(K+)-ATPase activities similar to those of standard intact S-1. For measurements of myosin binding to actin, the modified myofibrils were digested with trypsin at a weight ratio of 1:50 under rigor, relaxed, and active-state conditions. Aliquots of tryptic digestion reactions were then cleaved with chymotrypsin to yield isolated myosin heads and their fragments. Analysis of the decay of myosin heavy-chain bands on SDS gels yielded the rates of myosin cleavage under all conditions and enabled the measurements of actomyosin binding in myofibrils in the presence of MgATP. Using this approach, we detected rigorlike binding of 25 +/- 6% of myosin heads to actin in myofibrils during ATP hydrolysis. 相似文献
13.
Ligand-induced myosin subfragment 1 global conformational change 总被引:4,自引:0,他引:4
The effects of selected ligands on the structure of myosin subfragment 1 (S1) were compared by using transient electrical birefringence techniques. With pairs of dilute solutions of S1 at 3.5 degrees C in low ionic strength (mu = 0.020 M) buffers that had matched electrical impedances, S1 with Mg2+, MgADP, or MgADP.Vi bound was subjected to 6-7-microseconds external electrical fields in the Kerr law range. Specific Kerr constants and the rates of rotational Brownian motion after the electric field was removed were measured. Neither Mg2+ nor MgADP had a measurable effect on either observable, but when orthovanadate (Vi) bound S1.MgADP it decreased the rotational correlation coefficient from 267 +/- 6 to 244 +/- 10 ns. Parallel measurements of MgATPase activity indicated that S1.MgADP.Vi was greater than 95% inhibited. These results confirm the conclusion of Aguirre et al. [(1989) Biochemistry 28, 799] that Vi binding to S1.MgADP increases its rate of rotational Brownian motion and provide data that are more quantitatively correlated with S1 structure. The Vi-induced change in the rotational correlation coefficient is consistent with S1 becoming more flexible or more compact when Vi binds. Assuming that S1.MgADP.Vi is an analogue for S1.MgADP.Pi, the structural changes observed for S1-ligand complexes in solution are discussed in relation to possible structural changes of intermediates on the kinetic pathway of ATPase hydrolysis. A new model of force generation by S1 in muscle is hypothesized. 相似文献
14.
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament. 相似文献
15.
Lamers MH Georgijevic D Lebbink JH Winterwerp HH Agianian B de Wind N Sixma TK 《The Journal of biological chemistry》2004,279(42):43879-43885
MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair. 相似文献
16.
In this paper, we present the results of experimental studies on the influence of different magnesium isotopes, magnetic 25Mg and nonmagnetic 24Mg or 26Mg, on ATP-hydrolytic activity of the isolated myosin subfragment-1. The reaction rate in the presence of magnetic 25Mg isotope turned out to be 2.0–2.5 times higher than that using non-magnetic 24Mg or 26Mg isotopes. In absence of the enzyme, as at spontaneous ATP hydrolysis in aqueous solution, no magnetic isotope effect was observed. Thus, a significant catalytic effect of the magnetic 25Mg isotope (nuclear spin catalysis) was discovered in the enzymatic hydrolysis of ATP. 相似文献
17.
18.
The amino (N)-terminal and central regions of the ryanodine receptor (RyR) containing most mutation sites of malignant hyperthermia (MH) and central core disease (CCD) seem to be involved in the Ca(2+) channel regulation. Our recent peptide probe study (Yamamoto, T., El-Hayek, R., and Ikemoto, N. (2000) J. Biol. Chem. 275, 11618-11625) suggested the hypothesis that a close contact between the N-terminal and central domains (zipping) stabilizes the closed-state of the channel, while removal of the contact (unzipping) deblocks the channel, causing channel-activation effects. We here report the results of our recent effort to monitor local conformational changes in the putative domain-domain interaction site to test this hypothesis. The conformation-sensitive fluorescence probe, methyl coumarin acetamide (MCA), was incorporated into RyR in a protein- and site-specific manner by using DP4 (the peptide corresponding to the Leu(2442)-Pro(2477) region of the central domain) as a site-directing carrier. The site of MCA labeling was localized in the 150 kDa N-terminal region of RyR, indicating that DP4 and its in vivo counterpart (a portion of the central domain) interact with the N-terminal region. RyR-activating domain peptides, DP4 and DP1 (corresponding to the Leu(590)-Cys(609) region of the N-terminal domain), and depolarization of the T-tubule moiety of the triad (physiologic stimulation) induced a rapid decrease in the fluorescence intensity of the protein-bound MCA and Ca(2+) release at a somewhat slower rate. The accessibility of the protein-bound MCA to the fluorescence quencher was increased in the presence of DP4. These results are all consistent with the above hypothesis. 相似文献
19.
20.
Dependence of the rate of ATP hydrolysis with subfragment-I and temperature of SF-I, denaturation on the concentration of heavy water in solution was studied. The value of kinetic isotope effect V/Vx linearly increases with the rise of the volume portion of heavy water in solution and at X-1 it equals 1.9. The temperature of protein denaturacticn increases with X rise, the pattern of this relationship looking as an arched curve. The results differ from those earlier obtained on myosin which points to the absence of essential contribution of structural dynamic changes to enzymic hydrolysis of ATP by subfragment-I. 相似文献