首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules. Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson's disease, the proposed method identifies seven suspicious loci that may contribute independently to the disease.  相似文献   

2.
Development of post-GWAS (genome-wide association study) methods are greatly needed for characterizing the function of trait-associated SNPs. Strategies integrating various biological data sets with GWAS results will provide insights into the mechanistic role of associated SNPs. Here, we present a method that integrates RNA sequencing (RNA-seq) and allele-specific expression data with GWAS data to further characterize SNPs associated with follicular lymphoma (FL). We investigated the influence on gene expression of three established FL-associated loci—rs10484561, rs2647012, and rs6457327—by measuring their correlation with human-leukocyte-antigen (HLA) expression levels obtained from publicly available RNA-seq expression data sets from lymphoblastoid cell lines. Our results suggest that SNPs linked to the protective variant rs2647012 exert their effect by a cis-regulatory mechanism involving modulation of HLA-DQB1 expression. In contrast, no effect on HLA expression was observed for the colocalized risk variant rs10484561. The application of integrative methods, such as those presented here, to other post-GWAS investigations will help identify causal disease variants and enhance our understanding of biological disease mechanisms.  相似文献   

3.
Genome-wide association analysis in populations of European descent has recently found more than a hundred genetic variants affecting risk for common disease. An open question, however, is how relevant the variants discovered in Europeans are to other populations. To address this problem for cardiovascular phenotypes, we studied a cohort of 4,464 African Americans from the Jackson Heart Study (JHS), in whom we genotyped both a panel of 12 recently discovered genetic variants known to predict lipid profile levels in Europeans and a panel of up to 1,447 ancestry informative markers allowing us to determine the African ancestry proportion of each individual at each position in the genome. Focusing on lipid profiles—HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and triglycerides (TG)—we identified the lipoprotein lipase (LPL) locus as harboring variants that account for interethnic variation in HDL-C and TG. In particular, we identified a novel common variant within LPL that is strongly associated with TG (p=2.7×10−6) and explains nearly 1% of the variability in this phenotype, the most of any variant in African Americans to date. Strikingly, the extensively studied “gain-of-function” S447X mutation at LPL, which has been hypothesized to be the major determinant of the LPL-TG genetic association and is in trials for human gene therapy, has a significantly diminished strength of biological effect when it is found on a background of African rather than European ancestry. These results suggest that there are other, yet undiscovered variants at the locus that are truly causal (and are in linkage disequilibrium with S447X) or that work synergistically with S447X to modulate TG levels. Finally, we find systematically lower effect sizes for the 12 risk variants discovered in European populations on the African local ancestry background in JHS, highlighting the need for caution in the use of genetic variants for risk assessment across different populations.  相似文献   

4.
Although albuminuria and subsequent advanced stage chronic kidney disease are common among patients with diabetes, the rate of increase in albuminuria varies among patients. Since genetic variants associated with estimated glomerular filtration rate (eGFR) were identified in cross sectional studies, we asked whether these variants were also associated with rate of increase in albuminuria among patients with diabetes from ONTARGET and TRANSCEND—randomized controlled trials of ramipril, telmisartan, both, or placebo. For 16 genetic variants associated with eGFR at a genome-wide level, we evaluated the association with annual rate of increase in albuminuria estimated from urine albumin:creatinine ratio (uACR). One of the variants (rs267734) was associated with rate of increase in albuminuria. The annual rate of increase in albuminuria among risk homozygotes (69% of the study population) was 11.3% (95%CI; 7.5% to 15.3%), compared with 5.0% (95%CI; 3.3% to 6.8%) for heterozygotes (27% of the population), and 1.7% (95%CI; −1.7% to 5.3%) for non-risk homozygotes (4% of the population); P = 0.0015 for the difference between annual rates in the three genotype groups. These estimates were adjusted for age, sex, ethnicity, and principal component of genetic heterogeneity. Among patients without albuminuria at baseline (uACR<30 mg/g), each risk allele was associated with 50% increased risk of incident albuminuria (OR = 1.50; 95%CI 1.15 to 1.95; P = 0.003) after further adjustment for traditional risk factors including baseline uACR and eGFR. The rs267734 variant is in almost perfect linkage-disequilibrium (r2 = 0.94) with rs267738, a single nucleotide polymorphism encoding a glutamic acid to alanine change at position 115 of the ceramide synthase 2 (CERS2) encoded protein. However, it is unknown whether CERS2 function influences albuminuria. In conclusion, we found that rs267734 in CERS2 is associated with rate of increase in albuminuria among patients with diabetes and elevated risk of cardiovascular disease.  相似文献   

5.
High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.  相似文献   

6.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Despite remarkable success in uncovering many risk variants and providing novel insights into disease biology, genetic variants identified to date fail to explain the vast majority of the heritability for most complex diseases. One explanation is that there are still a large number of common variants that remain to be discovered, but their effect sizes are generally too small to be detected individually. Accordingly, gene set analysis of GWAS, which examines a group of functionally related genes, has been proposed as a complementary approach to single-marker analysis. Here, we propose a flexible and adaptive test for gene sets (FLAGS), using summary statistics. Extensive simulations showed that this method has an appropriate type I error rate and outperforms existing methods with increased power. As a proof of principle, through real data analyses of Crohn’s disease GWAS data and bipolar disorder GWAS meta-analysis results, we demonstrated the superior performance of FLAGS over several state-of-the-art association tests for gene sets. Our method allows for the more powerful application of gene set analysis to complex diseases, which will have broad use given that GWAS summary results are increasingly publicly available.  相似文献   

7.
Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that—even at large sample sizes—these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases.  相似文献   

8.

Background

Genome-wide association studies have been successful in identifying common genetic variants for human diseases. However, much of the heritable variation associated with diseases such as Parkinson’s disease remains unknown suggesting that many more risk loci are yet to be identified. Rare variants have become important in disease association studies for explaining missing heritability. Methods for detecting this type of association require prior knowledge on candidate genes and combining variants within the region. These methods may suffer from power loss in situations with many neutral variants or causal variants with opposite effects.

Results

We propose a method capable of scanning genetic variants to identify the region most likely harbouring disease gene with rare and/or common causal variants. Our method assigns a score at each individual variant based on our scoring system. It uses aggregate scores to identify the region with disease association. We evaluate performance by simulation based on 1000 Genomes sequencing data and compare with three commonly used methods. We use a Parkinson’s disease case–control dataset as a model to demonstrate the application of our method.Our method has better power than CMC and WSS and similar power to SKAT-O with well-controlled type I error under simulation based on 1000 Genomes sequencing data. In real data analysis, we confirm the association of α-synuclein gene (SNCA) with Parkinson’s disease (p = 0.005). We further identify association with hyaluronan synthase 2 (HAS2, p = 0.028) and kringle containing transmembrane protein 1 (KREMEN1, p = 0.006). KREMEN1 is associated with Wnt signalling pathway which has been shown to play an important role for neurodegeneration in Parkinson’s disease.

Conclusions

Our method is time efficient and less sensitive to inclusion of neutral variants and direction effect of causal variants. It can narrow down a genomic region or a chromosome to a disease associated region. Using Parkinson’s disease as a model, our method not only confirms association for a known gene but also identifies two genes previously found by other studies. In spite of many existing methods, we conclude that our method serves as an efficient alternative for exploring genomic data containing both rare and common variants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0088-9) contains supplementary material, which is available to authorized users.  相似文献   

9.
The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis.  相似文献   

10.
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple—even distinct—traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10−8) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10−7) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes.  相似文献   

11.
Idiopathic generalized epilepsy (IGE) is a complex disease with high heritability, but little is known about its genetic architecture. Rare copy-number variants have been found to explain nearly 3% of individuals with IGE; however, it remains unclear whether variants with moderate effect size and frequencies below what are reliably detected with genome-wide association studies contribute significantly to disease risk. In this study, we compare the exome sequences of 118 individuals with IGE and 242 controls of European ancestry by using next-generation sequencing. The exome-sequenced epilepsy cases include study subjects with two forms of IGE, including juvenile myoclonic epilepsy (n = 93) and absence epilepsy (n = 25). However, our discovery strategy did not assume common genetic control between the subtypes of IGE considered. In the sequence data, as expected, no variants were significantly associated with the IGE phenotype or more specific IGE diagnoses. We then selected 3,897 candidate epilepsy-susceptibility variants from the sequence data and genotyped them in a larger set of 878 individuals with IGE and 1,830 controls. Again, no variant achieved statistical significance. However, 1,935 variants were observed exclusively in cases either as heterozygous or homozygous genotypes. It is likely that this set of variants includes real risk factors. The lack of significant association evidence of single variants with disease in this two-stage approach emphasizes the high genetic heterogeneity of epilepsy disorders, suggests that the impact of any individual single-nucleotide variant in this disease is small, and indicates that gene-based approaches might be more successful for future sequencing studies of epilepsy predisposition.  相似文献   

12.
The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis.  相似文献   

13.
Association and linkage studies have shown that at least one of the genetic factors involved in susceptibility to insulin-dependent diabetes mellitus (IDDM) is contained within a 4.1-kb region of the insulin gene. Sequence analysis has led to the identification of 10 DNA variants in this region that are associated with increased risk for IDDM. These variants are in strong linkage disequilibrium with each other, and previous studies have failed to distinguish between the variant(s) that cause increased susceptibility to IDDM and others that are associated with the disease because of linkage disequilibrium. To address this problem, we have undertaken a large population study of French diabetics and controls and have analyzed genotype patterns for several of the variant sites simultaneously. This has led to the identification of a subset consisting of four variants (−2733AC, −23HphI, −365VNTR, and +1140AC), at least one of which appears to be directly implicated in disease susceptibility. The multiple-DNA-variant association-analysis approach that is applied here to the problem of identifying potential susceptibility variants in IDDM is likely to be important in studies of many other multifactorial diseases.  相似文献   

14.
The investigation of associations between rare genetic variants and diseases or phenotypes has two goals. Firstly, the identification of which genes or genomic regions are associated, and secondly, discrimination of associated variants from background noise within each region. Over the last few years, many new methods have been developed which associate genomic regions with phenotypes. However, classical methods for high-dimensional data have received little attention. Here we investigate whether several classical statistical methods for high-dimensional data: ridge regression (RR), principal components regression (PCR), partial least squares regression (PLS), a sparse version of PLS (SPLS), and the LASSO are able to detect associations with rare genetic variants. These approaches have been extensively used in statistics to identify the true associations in data sets containing many predictor variables. Using genetic variants identified in three genes that were Sanger sequenced in 1998 individuals, we simulated continuous phenotypes under several different models, and we show that these feature selection and feature extraction methods can substantially outperform several popular methods for rare variant analysis. Furthermore, these approaches can identify which variants are contributing most to the model fit, and therefore both goals of rare variant analysis can be achieved simultaneously with the use of regression regularization methods. These methods are briefly illustrated with an analysis of adiponectin levels and variants in the ADIPOQ gene.  相似文献   

15.
16.
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component and is characterized by chronic inflammation and the production of anti-nuclear auto-antibodies. In the era of genome-wide association studies (GWASs), elucidating the genetic factors present in SLE has been a very successful endeavor; 28 confirmed disease susceptibility loci have been mapped. In this review, we summarize the current understanding of the genetics of lupus and focus on the strongest associated risk loci found to date (P <1.0 × 10−8). Although these loci account for less than 10% of the genetic heritability and therefore do not account for the bulk of the disease heritability, they do implicate important pathways, which contribute to SLE pathogenesis. Consequently, the main focus of the review is to outline the genetic variants in the known associated loci and then to explore the potential functional consequences of the associated variants. We also highlight the genetic overlap of these loci with other autoimmune diseases, which indicates common pathogenic mechanisms. The importance of developing functional assays will be discussed and each of them will be instrumental in furthering our understanding of these associated variants and loci. Finally, we indicate that performing a larger SLE GWAS and applying a more targeted set of methods, such as the ImmunoChip and next generation sequencing methodology, are important for identifying additional loci and enhancing our understanding of the pathogenesis of SLE.  相似文献   

17.
Li C  Han J  Shang D  Li J  Wang Y  Wang Y  Zhang Y  Yao Q  Zhang C  Li K  Li X 《Gene》2012,503(1):101-109
Most methods for genome-wide association studies (GWAS) focus on discovering a single genetic variant, but the pathogenesis of complex diseases is thought to arise from the joint effect of multiple genetic variants. Information about pathway structure, such as the interactions and distances between gene products within pathways, can help us learn more about the functions and joint effect of genes associated with disease risk. We developed a novel sub-pathway based approach to study the joint effect of multiple genetic variants that are modestly associated with disease. The approach prioritized sub-pathways based on the significance values of single nucleotide polymorphisms (SNPs) and the interactions and distances between gene products within pathways. We applied the method to seven complex diseases. The result showed that our method can efficiently identify statistically significant sub-pathways associated with the pathogenesis of complex diseases. The approach identified sub-pathways that may inform the interpretation of GWAS data.  相似文献   

18.
19.
Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants.  相似文献   

20.
The 5’ untranslated region plays a key role in regulating mRNA translation and consequently protein abundance. Therefore, accurate modeling of 5’UTR regulatory sequences shall provide insights into translational control mechanisms and help interpret genetic variants. Recently, a model was trained on a massively parallel reporter assay to predict mean ribosome load (MRL)—a proxy for translation rate—directly from 5’UTR sequence with a high degree of accuracy. However, this model is restricted to sequence lengths investigated in the reporter assay and therefore cannot be applied to the majority of human sequences without a substantial loss of information. Here, we introduced frame pooling, a novel neural network operation that enabled the development of an MRL prediction model for 5’UTRs of any length. Our model shows state-of-the-art performance on fixed length randomized sequences, while offering better generalization performance on longer sequences and on a variety of translation-related genome-wide datasets. Variant interpretation is demonstrated on a 5’UTR variant of the gene HBB associated with beta-thalassemia. Frame pooling could find applications in other bioinformatics predictive tasks. Moreover, our model, released open source, could help pinpoint pathogenic genetic variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号