首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Herpes simplex virus type 1 (HSV-1) is a common virus of mankind and HSV-1 infections are a significant cause of blindness. The current antiviral treatment of herpes infection relies on acyclovir and related compounds. However, acyclovir resistance emerges especially in the long term prophylactic treatment that is required for prevention of recurrent herpes keratitis. Earlier we have established antiviral siRNA swarms, targeting sequences of essential genes of HSV, as effective means of silencing the replication of HSV in vitro or in vivo. In this study, we show the antiviral efficacy of 2´-fluoro modified antiviral siRNA swarms against HSV-1 in human corneal epithelial cells (HCE). We studied HCE for innate immunity responses to HSV-1, to immunostimulatory cytotoxic double stranded RNA, and to the antiviral siRNA swarms, with or without a viral challenge. The panel of studied innate responses included interferon beta, lambda 1, interferon stimulated gene 54, human myxovirus resistance protein A, human myxovirus resistance protein B, toll-like receptor 3 and interferon kappa. Our results demonstrated that HCE cells are a suitable model to study antiviral RNAi efficacy and safety in vitro. In HCE cells, the antiviral siRNA swarms targeting the HSV UL29 gene and harboring 2´-fluoro modifications, were well tolerated, induced only modest innate immunity responses, and were highly antiviral with more than 99% inhibition of viral release. The antiviral effect of the 2’-fluoro modified swarm was more apparent than that of the unmodified antiviral siRNA swarm. Our results encourage further research in vitro and in vivo on antiviral siRNA swarm therapy of corneal HSV infection, especially with modified siRNA swarms.  相似文献   

2.
Herpes simplex virus 1 (HSV-1) causes herpes stromal keratitis (HSK), a sight-threatening disease of the cornea for which no vaccine exists. A replication-defective, HSV-1 prototype vaccine bearing deletions in the genes encoding ICP8 and the virion host shutoff (vhs) protein reduces HSV-1 replication and disease in a mouse model of HSK. Here we demonstrate that combining deletion of ICP8 and vhs with virus-based expression of B7 costimulation molecules created a vaccine strain that enhanced T cell responses to HSV-1 compared with the ICP8vhs parental strain, and reduced the incidence of keratitis and acute infection of the nervous system after corneal challenge. Post-challenge T cell infiltration of the trigeminal ganglia and antigen-specific recall responses in local lymph nodes correlated with protection. Thus, B7 costimulation molecules expressed from the genome of a replication-defective, ICP8vhs virus enhance vaccine efficacy by further reducing HSK.  相似文献   

3.
Uncontrolled herpes simplex virus 1 (HSV-1) infection can advance to serious conditions, including corneal blindness or fatal encephalitis. Here, we describe a highly potent anti-HSV-1 peptide (DG2) that inhibits HSV-1 entry into host cells and blocks all aspects of infection. Importantly, DG2 is highly resistant to proteases and shows minimal toxicity, paving the way for prophylactic or therapeutic application of the peptide in vivo.  相似文献   

4.
5.
Herpes Simplex Virus 1 (HSV-1) is a major pathogen that causes human neurological diseases, including herpes simplex encephalitis (HSE). Previous studies have shown that astrocytes are involved in HSV-1 systemic pathogenesis in the central nervous system (CNS), although the mechanism remains unclear. In this study, a high-throughput RNAi library screening method was used to analyze the effect of host phosphatase gene regulation on HSV-1 replication using Macaca mulatta primary astrocytes in an in vitro culture system. The results showed that the downregulation of five phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) significantly inhibited HSV-1 infection, suggesting that these phosphatases were needed in HSV-1 replication in rhesus astrocytes. Although statistically significant, the effect of downregulation of these phosphatases on HSV-1 replication in a human astrocytoma cell line appears to be more limited. Our results suggest that the phosphatase genes in astrocytes may regulate the immunological and pathological reactions caused by HSV-1 CNS infection through the regulation of HSV-1 replication or of multiple signal transduction pathways.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.  相似文献   

7.
The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.  相似文献   

8.
To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.  相似文献   

9.
Rhadinoviruses establish chronic infections of clinical and economic importance. Several show respiratory transmission and cause lung pathologies. We used Murid Herpesvirus-4 (MuHV-4) to understand how rhadinovirus lung infection might work. A primary epithelial or B cell infection often is assumed. MuHV-4 targeted instead alveolar macrophages, and their depletion reduced markedly host entry. While host entry was efficient, alveolar macrophages lacked heparan - an important rhadinovirus binding target - and were infected poorly ex vivo. In situ analysis revealed that virions bound initially not to macrophages but to heparan+ type 1 alveolar epithelial cells (AECs). Although epithelial cell lines endocytose MuHV-4 readily in vitro, AECs did not. Rather bound virions were acquired by macrophages; epithelial infection occurred only later. Thus, host entry was co-operative - virion binding to epithelial cells licensed macrophage infection, and this in turn licensed AEC infection. An antibody block of epithelial cell binding failed to block host entry: opsonization provided merely another route to macrophages. By contrast an antibody block of membrane fusion was effective. Therefore co-operative infection extended viral tropism beyond the normal paradigm of a target cell infected readily in vitro; and macrophage involvement in host entry required neutralization to act down-stream of cell binding.  相似文献   

10.
11.
Herpes simplex virus type 2 (HSV-2) is one of the most common sexually transmitted pathogens worldwide. The host immune response induced by viral infection is cell-type specific. Little is known about the innate immune response to this virus in its natural host cells. In this study, we established an in vitro HSV-2 infection model with human cervical epithelial (HCE) cells. The viral infection was sufficient to induce expression of Toll-like receptors (TLRs), and Western blot and reporter assays suggest that HSV-2 infection leads to dramatic activation of the NF-κB signaling pathway. More importantly, our data provide direct evidence that the activation of NF-κB is required for the production of both IL-6 and IFN-β induced by HSV-2 in HCE cells. Taken together, our results suggest the potential contributions of TLRs and a critical role of NF-κB in the innate immune response to HSV-2 in HCE cells.  相似文献   

12.
13.
Interleukin-8 (IL-8) is a proinflammatory cytokine released at sites of tissue damage by various cell types. One important function of IL-8 is to recruit neutrophils into sites of inflammation and to activate their biological activity. Stromal keratitis induced by herpes simplex virus type 1 (HSV-1) is characterized by an initial infiltration of neutrophils. This study was carried out to determine whether cells resident in the cornea synthesize IL-8 after virus infection. Pure cultures of epithelial cells and keratocytes established from human corneas were infected with HSV-1, and the medium overlying the cells was subsequently assayed for IL-8 by an enzyme-linked immunosorbent assay. Cytokine mRNA levels in cell lysates were monitored by Northern (RNA) blot analysis. It was found that virus infection of keratocyte cultures led to the synthesis of IL-8-specific mRNA with more than 30 ng of IL-8 made per 10(6) cells. Neither UV-inactivated virus nor virus-free filtrates collected from HSV-1-infected keratocytes could induce IL-8 protein or mRNA, suggesting that viral gene expression was needed for induction of IL-8 gene expression. Unlike keratocytes, HSV-1-infected epithelial cells failed to synthesize IL-8 protein or mRNA. However, these cells readily produced both molecules following tumor necrosis factor alpha stimulation. HSV-1 had similar titers in both cell types. Thus, the failure to induce IL-8 synthesis was not due to an inability of the virus to replicate in epithelial cells. The capacity of HSV-1-infected corneal keratocytes to synthesize IL-8 suggests that these cells can contribute to the induction of the acute inflammatory response seen in herpes stromal keratitis.  相似文献   

14.
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses.  相似文献   

15.
Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.  相似文献   

16.
17.
We have established an in vitro HSV-2 acute infection model with Human cervical epithelial (HCE cells, the primary target and natural host cells for HSV-2) to investigate the role of TLRs-mediated innate immune response to HSV-2. In current study, we found that HSV-2 infection induced activity of NF-kB reporter and expression of cytokines are TLR4-dependent using approaches with shRNA and TLR4 antagonist. Knockdown experiments demonstrated that the adaptor molecules MyD88 and Mal of the TLRs signaling pathway are required in the HSV-2 induced TLR4-dependent NF-kB activation in HCE cells. Western blot assay suggested that knockdown of TLR4 decreased the phosphorylation of IRAK1 and inhibitor of NF-kB (IkB-α) upon HSV-2 infection. Finally, decreased expression of either TLR4 or MyD88/Mal alone or both significantly abolished productions of IL-6 and IFN-β by ELISA analysis. Taken together, our results from the in vitro infection model reveal for the first time that there exists the pathway via TLR4-Mal/MyD88-IRAK1-NF-kB axis in human cervical epithelial cells in response to HSV-2 infection.  相似文献   

18.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.  相似文献   

19.
Ocular infection with herpes simplex virus (HSV) can result in a chronic immune inflammatory lesion that is a significant cause of human blindness. A key to controlling stromal keratitis (SK) lesion severity is to identify cellular and molecular events responsible for tissue damage and to counteract them. One potentially useful approach to achieve such therapy is Retinoic Acid (RA). Here we show that RA therapy reduces the severity of SK by having inhibitory effects on the T effector subtypes responsible for orchestrating SK. RA also served to stabilize the function of regulatory T cell (Treg) which counteract inflammatory cell activity. The Treg stabilizing effect was demonstrated by in vitro studies where RA was shown to retain Foxp3 expression when exposed to proinflammatory conditions such as IL-12 and IL-6+TGF-β. in vivo studies revealed that RA exerted its stabilizing effects by downregulating IL-6R expression on Treg after HSV-1 infection and this helped to control the progression of SK. Since the therapy was effective when used both early and after the initiation of lesions, it may represent a valuable means of therapy when used alone or along with additional therapies.  相似文献   

20.
Fungal keratitis causes devastating corneal ulcers which can result in significant visual impairment and even blindness. As a ligand that activates the non-canonical Wnt signaling pathways, Wnt5a triggers the production of important inflammatory chemokines and the chemotactic migration of neutrophils. In this study we aimed to characterize the role of Wnt5a production, in situ, in vivo and in vitro in response to fungal keratitis. Wnt5a expression in corneas of Aspergillus fumigatus (A. fumigatus) keratitis patients was determined by quantitative polymerase chain reaction (qRT-PCR) and immunofluorescence. In vivo and in vitro experiments were then performed in mouse models and THP-1 macrophages cell cultures infected with A. fumigatus, respectively. C57BL/6 mice were pretreated with siRNAs or neutralizing antibodies for dectin-1, LOX-1 and Wnt5a, or inhibitors of erk1/2 and JNK. Changes in Wnt5a expression were assessed by clinical evaluation, qRT-PCR, immunofluorescence, western blot and bioluminescence imaging system image acquisition. We confirmed that corneal Wnt5a expression increased with A. fumigatus keratitis in patients and a murine model. Wnt5a production was dependent on dectin-1 and LOX-1 expression with contributions by Erk1/2 and JNK pathways. Additionally, Wnt5a knockdown revealed decreased levels of MPO, lower neutrophil recruitment, and a higher fungal load in mouse models. Compared with controls, Wnt5a knockdown impaired pro-inflammatory cytokine IL-1β production in response to A. fumigatus exposure. Wnt5a also produces dectin-1 and LOX-1 induced inflammatory signature via effective neutrophil recruitment and inflammatory cytokine production in response to A. fumigatus keratitis. These findings demonstrate that Wnt5a is a critical component of the antifungal immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号