首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high affinity neuronal choline transporter (CHT1) is responsible for the uptake of choline into the pre-synaptic terminal of cholinergic neurons. Considering our past experience with modeling the blood–brain barrier choline transporter (BBBCHT) as drug delivery vector to the CNS, we investigated the 3-D-quantitative structure–activity relationship of the neuronal choline transporter. Comparative molecular field analysis (CoMFA) and comparative similarity index analysis (CoMSIA) yielded cross-validated models with a q2 of 0.5, and a non-cross validated r2 of 0.8. The electrostatic results of the 3-D-QSAR models are corroborated with a docking study into the bacterial choline transporter. Using this electrostatic map, we propose a putative binding site in a homology model of the CHT1. Knowledge gained from this study is useful to better understand the CHT1 as well as can be used in medicinal chemistry programs targeting this transporter.  相似文献   

2.
The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na+/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na+/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.  相似文献   

3.
Hereditary spastic paraplegias (HSPs), characterized by progressive and bilateral spasticity of the legs, are usually caused by developmental failure or degeneration of motor axons in the corticospinal tract. There are considerable interfamilial and intrafamilial variations in age at onset and severity of spasticity. Genetic studies also showed that there are dozens of genetic loci, on multiple chromosomes, that are responsible for HSPs. Through linkage study of a pedigree of HSP with autosomal-dominant inheritance, we mapped the causative gene to 3q24-q26. Screening of candidate genes revealed that the HSP is caused by a missense mutation in the gene for acetyl-CoA transporter (SLC33A1). It is predicted that the missense mutation, causing the change of the highly conserved serine to arginine at the codon 113 (p. S113R), disrupts the second transmembrane domain in the transporter and reverses the orientation of all of the descending domains. Knockdown of Slc33a1 in zebrafish caused a curve-shaped tail and defective axon outgrowth from the spinal cord. Although the wild-type human SLC33A1 was able to rescue the phenotype caused by Slc33a1 knockdown in zebrafish, the mutant SLC33A1 (p.S113R) was not, suggesting that S113R mutation renders SLC33A1 nonfunctional and one that wild-type allele is not sufficient for sustaining the outgrowth and maintenance of long motor axons in human heterozygotes. Thus, our study illustrated a critical role of acetyl-CoA transporter in motor-neuron development and function.  相似文献   

4.
Presynaptic choline uptake is vital to sustained neuronal acetylcholine (ACh) release; however, only with the recent cloning of choline transporters (CHTs) (i.e., SLC5A7), has a picture emerged of the regulatory pathways supporting CHT modulation. Studies arising from the development of CHT-specific antibodies reveal a large, intracellular reserve of CHT proteins, localized to ACh-containing, synaptic vesicles. The intersection of mechanisms supporting vesicular ACh release and choline uptake demonstrates an elegant mechanism for linking regulation of CHT membrane density to rates of ACh release. Furthermore, these studies point to control of the CHT endocytic process as an important target for novel therapeutics that could offset functional deficits in disorders bearing diminished cholinergic tone, including myasthenias and dementias.  相似文献   

5.
The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.  相似文献   

6.
The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+- and Cl-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.  相似文献   

7.
A set of semi-rigid cyclic and acyclic bis-quaternary ammonium analogs, which were part of a drug discovery program aimed at identifying antagonists at neuronal nicotinic acetylcholine receptors, were investigated to determine structural requirements for affinity at the blood–brain barrier choline transporter (BBB CHT). This transporter may have utility as a drug delivery vector for cationic molecules to access the central nervous system. In the current study, a virtual screening model was developed to aid in rational drug design/ADME of cationic nicotinic antagonists as BBB CHT ligands. Four 3D-QSAR comparative molecular field analysis (CoMFA) models were built which could predict the BBB CHT affinity for a test set with an r2 <0.5 and cross-validated q2 of 0.60, suggesting good predictive capability for these models. These models will allow the rapid in silico screening of binding affinity at the BBB CHT of both known nicotinic receptor antagonists and virtual compound libraries with the goal of informing the design of brain bioavailable quaternary ammonium analogs that are high affinity selective nicotinic receptor antagonists.  相似文献   

8.
The sodium‐coupled, hemicholinium‐3‐sensitive, high‐affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol‐rich lipid rafts in both SH‐SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH‐SY5Y cells expressing rat CHT with filipin, methyl‐β‐cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol‐saturated MβC. Kinetic analysis of binding of [3H]hemicholinium‐3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol‐rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.

  相似文献   


9.
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.  相似文献   

10.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


11.
Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits’ entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.  相似文献   

12.
The rate-limiting step in neuronal acetylcholine (ACh) synthesis is the uptake of choline via a high-affinity transporter. We have generated antisera against the recently identified transporter CHT1 to investigate its distribution in rat motor neurons and skeletal muscle and have used these antisera in combination with (1) antisera against the vesicular acetylcholine transporter (VAChT) to identify cholinergic synapses and (2) Alexa-488-labelled alpha-bungarotoxin to identify motor endplates. In the motor unit, immunohistochemistry and RT-PCR have demonstrated that CHT1 is restricted to motoneurons and absent from the non-neuronal ACh-synthesizing elements, e.g. skeletal muscle fibres. In addition, CHT1 is also present in parasympathetic neurons of the tongue, as evidenced by immunohistochemistry and RT-PCR. CHT1 immunoreativity is principally found at all segments (perikaryon, dendrites, axon) of the motoneuron but is enriched at neuro-neuronal and neuro-muscular synapses. This preferential localisation matches well with its anticipated pivotal role in synaptic transmitter recycling and synthesis.  相似文献   

13.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   

14.
The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems.  相似文献   

15.
Choline transporters, cholinergic transmission and cognition   总被引:4,自引:0,他引:4  
Cholinergic projections to the cortex and hippocampus mediate fundamental cognitive processes. The capacity of the high-affinity choline uptake transporter (CHT) to import choline from the extracellular space to presynaptic terminals is essential for normal acetylcholine synthesis and therefore cholinergic transmission. The CHT is highly regulated, and the cellular mechanisms that modulate its capacity show considerable plasticity. Recent evidence links changes in CHT capacity with the ability to perform tasks that tax attentional processes and capacities. Abnormal regulation of CHT capacity might contribute to the cognitive impairments that are associated with neurodegenerative and neuropsychiatric disorders. Therefore, the CHT might represent a productive target for the development of new pharmacological treatments for these conditions.  相似文献   

16.
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis.  相似文献   

17.
Alaskan Husky Encephalopathy (AHE) has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS). We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 – 43.36–43.38 Mb and SLC19A3.1 – 43.411–43.419 Mb) on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A). All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.  相似文献   

18.
This study tested the hypothesis that dietary l-arginine supplementation confers beneficial effects on growing pigs fed a mold-contaminated diet. The measured variables included: (1) the average daily weight gain and feed:gain ratio; (2) activities of total superoxide dismutase, glutathione peroxidase, diamine oxidase, as well as amino acid and d-lactate concentrations in serum; (3) intestinal morphology; (4) expression of the genes for SLC7A7 (amino acid transporter light chain, y+L system, family 7, member 7), SLC7A1 (cationic amino acid transporter, y+ system, family 7, member 1), SLC1A1 (neuronal/epithelial high affinity glutamate transporter, system XAG, member 1), SLC5A1 (sodium/glucose cotransporter, family 5, member 1) in the ileum and jejunum. Mycotoxins in feedstuffs resulted in an enlarged small intestine mass, oxidative injury in tissues, and reduced growth performance in pigs. Dietary arginine supplementation enhanced (P < 0.05) expression of jejunal SLC7A7 and ileal SLC7A1, in comparison with the control and mycotoxin groups. In addition, supplementing 1 % l-arginine to the mycotoxin-contaminated feed had the following beneficial effects (P < 0.05): (1) alleviating the imbalance of the antioxidant system in the body; (2) ameliorating intestinal abnormalities; and (3) attenuating whole-body growth depression, compared with the mycotoxin group without arginine treatment. Collectively, these results indicate that dietary supplementation with l-arginine exerts a protective role in pigs fed mold-contaminated foods. The findings may have important nutritional implications for humans and other mammals.  相似文献   

19.
Three closely related genes encoding amino acid transport proteins are clustered on 5q32 in humans, and Chromosome (Chr) 11 in mice. The human SLC36A1 gene, which encodes the lysosomal amino acid transporter LYAAT1/PAT1, generates multiple alternative mRNAs, some of which encode truncated proteins. SLC36A1 is expressed in numerous tissues, whereas expression of SLC36A2, which encodes the glycine transporter tramdorin1/PAT2, is most abundant in kidney and muscle. Expression of a third gene, SLC36A3, is restricted to testis. Mouse Slc36a2 also is expressed in bone and fat tissue. Polymorphisms in human SLC36A2 exclude it as a candidate locus for a peripheral neuropathy that has been mapped to 5q31-33. SLC36A2 is a candidate gene for 5q-myelodysplastic syndrome, on the basis of its chromosomal location and its expression in bone.  相似文献   

20.
Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号