首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cancer stem cell (CSC) model has been established as a cellular mechanism that contributes to phenotypic and functional heterogeneity in diverse cancer types. Recent observations, however, have highlighted many complexities and challenges: the CSC phenotype can vary substantially between patients, tumors may harbor multiple phenotypically or genetically distinct CSCs, metastatic CSCs can evolve from primary CSCs, and tumor cells may undergo reversible phenotypic changes. Although the CSC concept will have clinical relevance in specific cases, accumulating evidence suggests that it will be imperative to target all CSC subsets within the tumor to prevent relapse.  相似文献   

2.
中性粒细胞是循环系统中最丰富的白细胞,是肿瘤微环境的重要组成部分.中性粒细胞参与肿瘤发生发展过程中的不同阶段,包括肿瘤的发生、增殖和转移.肿瘤微环境中的中性粒细胞群体表现出异质性表型和功能多样性,在肿瘤微环境中扮演促瘤或抑瘤双重角色.本综述重点阐述中性粒细胞在肿瘤微环境中的募集、异质性和极化性,在肿瘤发生发展中及其在临...  相似文献   

3.
Neutrophil heterogeneity was described decades ago, but it could not be elucidated at the time whether the existence of different neutrophil subsets had any biological relevance. It has been corroborated in recent years that neutrophil subsets, defined by differential expression of various markers, are indeed present in human blood, calling for renewed attention to this question. The expression of the granule protein olfactomedin 4 (OLFM4) has been suggested to define two such neutrophil subsets. We confirm the simultaneous presence of one OLFM4-positive and one OLFM4-negative neutrophil subpopulation as well as the localization of the protein to specific granules. In vitro, these neutrophil subsets displayed equal tendency to undergo apoptosis and phagocytose bacteria. In addition, the subpopulations were recruited equally to inflammatory sites in vivo, and this was true both in an experimental model of acute inflammation and in naturally occurring pathological joint inflammation. In line with its subcellular localization, only limited OLFM4 release was seen upon in vivo transmigration, and release through conventional degranulation required strong secretagogues. However, extracellular release of OLFM4 could be achieved upon formation of neutrophil extracellular traps (NETs) where it was detected only in a subset of the NETs. Although we were unable to demonstrate any functional differences between the OLFM4-defined subsets, our data show that different neutrophil subsets are present in inflamed tissue in vivo. Furthermore, we demonstrate NETs characterized by different markers for the first time, and our results open up for functions of OLFM4 itself in the extracellular space through exposure in NETs.  相似文献   

4.
The existence of phenotypic differences within a population of cells provides evidence for discrete stages in cellular differentiation and/or identifies subsets of cells with unique functional properties. The monoclonal antibody HNK-1 has been widely shown to identify subpopulations of cells in the developing nervous system. In this paper we focus on the developmental expression of HNK-1 immunoreactivity by derivatives of somitic (paraxial) mesoderm. We show that between embryonic day 12 and 14 (E12–E14) the HNK-1 epitope is transiently expressed by postmitotic myotomal cells. In E14–E17 developing vertebral columns (which are derived from somitic sclerotomal cells), HNK-1 immunolabeling was expressed by subpopulations of skeletogenic cells, including perinotochordal cells associated with the forming annulus fibrosus and cells within or adjacent to the perichondrium. Chondrocytes within forming centra and vertebral arches did not exhibit HNK-1 immunoreactivity. These results, taken together, show that the expression of the HNK-1 epitope can be used to identify subsets of myogenic and skeletogenic cells both spatially and temporally in the developing rat.  相似文献   

5.
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.  相似文献   

6.
癌症发生最有名的模型之一肿瘤CSCcancer stem cell(CSC)模型已经被确立为一种细胞机制,有助于体现不同类型的肿瘤表型和功能的异质性。然而,最新研究突出显示了肿瘤CSC模型的复杂性和挑战性:CSC表型在不同的病人间有本质上的不同,肿瘤可能含有多种表型或遗传上不同的CSC,转移的肿瘤CSC可能由原始肿瘤CSC进展而来,肿瘤细胞可进行可逆的表型的改变。虽然在特定情况下,肿瘤CSC的概念具有临床相关性,但越来越多的证据表明,定位、鉴定出肿瘤灶中所有亚型的肿瘤CSC将对临床上预防肿瘤复发具有特殊意义。有以下几个因素可以促使异质性的发生:基因突变,后生的变化,与微环境间的相互作用以及存在或缺失细胞分级等。肿瘤异质性可以用不同的细胞机制来解释。虽然CSC具有CSC自我更新和分化的特性,但是它们不一定是正常组织CSC转化而形成的。这种CSC模型引起了科研工作者广泛的关注,我们结合新近的相关文献综述如下。  相似文献   

7.
郑一诫  储以微 《生命科学》2010,(10):1025-1030
硫化氢(H2S)是具有生物学效应的气体小分子,它在免疫系统中亦发挥着重要的调节功能。H2S可通过影响IL-2(Interleukin-2)的合成抑制淋巴细胞增殖;可通过激活ERK激酶(extracellular regulated pro-tein kinases)或者KATP通道(ATP-sensitive potassium channel),促进单核巨噬细胞及中性粒细胞分泌促炎因子,导致组织损伤,诱导诸如溃疡性结肠炎、胃炎、急性胰腺炎、急性肺损伤及毒血症等多种炎症性疾病。相反,H2S还可诱导多种抑炎因子,发挥抑制炎症的作用。鉴于H2S在免疫与炎症中发挥的生理和病理效应,该文对H2S在炎症与免疫调节中的研究进展进行综述。  相似文献   

8.
Although T cells have been implicated in the pathogenesis and are considered to be central both in progression and control of the chronic inflammatory periodontal diseases, the precise contribution of T cells to the regulation of tissue destruction has not been fully elucidated. Current dogma suggests that immunity to infection is controlled by distinct T helper 1 (Th1) and T helper 2 (Th2) subsets of T cells classified on the basis of their cytokine profile. Further, a subset of T cells with immunosuppressive function and cytokine profile distinct from Th1 or Th2 has been described and designated as regulatory T cells. Although these regulatory T cells have been considered to maintain self-tolerance resulting in the suppression of auto-immune responses, recent data suggest that these cells may also play a role in preventing infection-induced immunopathology. In this review, the role of functional and regulatory T cells in chronic inflammatory periodontal diseases will be summarized. This should not only provide an insight into the relationship between the immune response to periodontopathic bacteria and disease but should also highlight areas of development for potentially new therapeutic modalities.  相似文献   

9.
The synucleinopathies, which include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.  相似文献   

10.
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.  相似文献   

11.
B cells are central players in multiple autoimmune rheumatic diseases as a result of the imbalance between pathogenic and protective B-cell functions, which are presumably mediated by distinct populations. Yet the functional role of different B-cell populations and the contribution of specific subsets to disease pathogenesis remain to be fully understood owing to a large extent to the use of pauci-color flow cytometry. Despite its limitations, this approach has been instrumental in providing a global picture of multiple B-cell abnormalities in multiple human rheumatic diseases, more prominently systemic lupus erythematosus, rheumatoid arthritis and Sjogren’s syndrome. Accordingly, these studies represent the focus of this review. In addition, we also discuss the added value of tapping into the potential of polychromatic flow cytometry to unravel a higher level of B-cell heterogeneity, provide a more nuanced view of B-cell abnormalities in disease and create the foundation for a precise understanding of functional division of labor among the different phenotypic subsets. State-of-the-art polychromatic flow cytometry and novel multidimensional analytical approaches hold tremendous promise for our understanding of disease pathogenesis, the generation of disease biomarkers, patient stratification and personalized therapeutic approaches.  相似文献   

12.
The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phenotypic plasticity. Despite this, there is little information available about the degree to which the genome is methylated in this species and genes encoding methylation machinery have not been previously identified. We therefore undertook an initial investigation to establish the presence of a functional DNA methylation system in L. migratoria. We found that the migratory locust possesses genes that putatively encode methylation machinery (DNA methyltransferases and a methyl-binding domain protein) and exhibits genomic methylation, some of which appears to be localised to repetitive regions of the genome. We have also identified a distinct group of genes within the L. migratoria genome that appear to have been historically methylated and show some possible functional differentiation. These results will facilitate more detailed research into the functional significance of DNA methylation in locusts.  相似文献   

13.
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.  相似文献   

14.
The widespread distribution of fibroblasts underlines their central role in mammalian physiology, development and ageing. The existence of developmentally regulated and site-specific phenotypic variation in fibroblasts is well documented. Recent evidence has revealed heterogeneity within the fibroblast population of a given tissue at a specified development stage. The relative proportion and tissue distribution of distinct fibroblast subsets must have important consequences in the control of connective tissue and adjacent epithelial functions in health and disease.  相似文献   

15.
16.
The immune mechanisms whereby malaria parasites are eliminated by the human host or how they may avoid the immune response are poorly understood. Individuals living in malaria-endemic areas gradually acquire immunity. It is well established that this immunity involves both cell-mediated and humoral mechanisms and that T cells are the major regulators in both these events. The existence of functionally distinct P. falciparum-specific CD4+ T-cell subsets in humans has been shown in several studies. However, in contrast to what is the case in murine models there is no definitive link between the activation of various T cells and the course of human P. falciparum blood-stage infection. In the present paper we will review recent findings which illustrate how the balance between functionally different T-cell subsets affects the development of malaria immunity but also may contribute to its pathogenicity. An example of the latter is the deposition of IgE-containing immune complexes in small vessels, probably leading to local overproduction of tumor-necrosis factor (TNF), a pathogenic factor in malaria.  相似文献   

17.
Accumulating evidence indicates that myeloid cells are critically involved in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages, the significance of granulocytes in cancer has only recently begun to emerge. A number of studies found increased numbers of neutrophil granulocytes and granulocytic myeloid-derived suppressor cells (GrMDSCs) both in the peripheral blood and in the tumor tissues of patients with different types of cancer. Most importantly, granulocytes have been linked to poor clinical outcome in cancer patients which suggests that these cells might have important tumor-promoting effects. In this review, we will address in detail the following major topics: (1) neutrophils and GrMDSCs in the peripheral blood of cancer patients-phenotype and functional changes; (2) neutrophils and GrMDSCs in the tumor tissue-potential mechanisms of tumor progression and (3) relevance of neutrophils and GrMDSCs for the clinical outcome of cancer patients. Furthermore, we will discuss the advantages and disadvantages of the current strategies used for identification and monitoring of human MDSCs. We propose a six-color immunophenotyping protocol that discriminates between monocytic MDSCs (MoMDSCs), two subsets of GrMDSCs and two subsets of immature myeloid cells in human cancer patients, thus, allowing for an improved characterization and understanding of these multifaceted cells.  相似文献   

18.
The involvement of a smouldering microenvironment is currently considered a cancer hallmark and a required step for tumour cells to disable specific immunity while promoting angiogenesis and stroma remodelling. Nevertheless, the molecular pathways driving such aberrant interactions in human cancer and their actual implication in disease progression are still poorly defined. Here, we will report about the remarkable efforts devoted by our group as well as many other scientists to dissect this process focusing on tumour-mediated activation of myeloid dysfunctional pathways occurring in cancer patients. Indeed, myeloid-derived suppressor cells (MDSC), playing a crucial role as cellular regulators of immune responses, have been extensively shown to restrain tumour immunity through a vast array of molecular mechanisms and to promote tumour progression in different murine models. Although in mice the phenotypic features of these cells were defined initially rather generally by Gr1+ and CD11b+ co-expression, more recent studies have unravelled the actual complexity of this population and the existence of different cell subsets. This complexity is even more remarked in the human setting, where heterogeneous populations of myeloid cells with variable phenotype and immunosuppressive features have been described in patients affected by different types of tumours. The lack of homogeneous properties of human MDSC has made these cells a controversial and still unacknowledged player in cancer-related immune suppression and disease progression. Nevertheless, with the efforts of the scientific community, MDSC will soon reveal their key role thereby becoming novel targets for innovative therapeutic strategies.  相似文献   

19.
20.
Monocytes can have important effects on the polarization and expansion of lymphocytes and may contribute to shaping primary and memory T-cell responses in humans and mice. However, their precise contribution in terms of cellular subsets and the molecular mechanisms involved remains to be determined. Mouse monocytes originate from a bone marrow progenitor, the macrophage and DC precursor (MDP), which also gives rise to conventional dendritic cells through a separate differentiation pathway. Mouse monocytes may be grouped in different functional subsets. The CD115(+) Gr1(+) 'inflammatory' monocyte subset can give rise not only to immunostimulatory 'TipDCs' in infected mice but also to immunosuppressive 'myeloid-derived suppressor cells' in tumor-bearing mice. CD115(+) Gr1(+) monocytes can also contribute to the renewal of several resident subsets of macrophages and DCs, such as microglia and Langerhans cells, in inflammatory conditions. The CD115(+) Gr1(-) 'resident' monocyte subset patrols blood vessels in the steady state and extravasates during infection with Listeria monocytogenes or in the healing myocardium. CD115(+) Gr1(-) monocytes are responsible for an early and transient inflammatory burst during Lm infection, which may play a role in the recruitment of other effector cells and subsequently differentiate toward 'M2'-like macrophages that may be involved in wound healing. More research will no doubt confirm the existence of more functional subsets, the developmental relationship between mouse subsets as well as the correspondence between mouse subsets and human subsets of monocytes. We will discuss here the potential roles of monocytes in the immune response, the existence of functional subsets and their relationship with other myeloid cells, including dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号