首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Objectives

Resting state (RS) functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC) while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC) for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls.

Design

Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS) and 31 age- and gender matched healthy controls (HC). Participants underwent extensive cognitive testing.

Observations

In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC), insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus.

Conclusion

We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.  相似文献   

2.

Background

The default mode network (DMN) has been linked to a number of mental disorders including schizophrenia. However, the abnormal connectivity of DMN in early onset schizophrenia (EOS) has been rarely reported.

Methods

Independent component analysis (ICA) was used to investigate functional connectivity (FC) of the DMN in 32 first-episode adolescents with EOS and 32 age and gender-matched healthy controls.

Results

Compared to healthy controls, patients with EOS showed increased FC between the medial frontal gyrus and other areas of the DMN. Partial correlation analyses showed that the FC of medial frontal gyrus significantly correlated with PANSS-positive symptoms (partial correlation coefficient  = 0.538, Bonferoni corrected P = 0.018).

Limitations

Although the sample size of participants was comparable with most fMRI studies to date, it was still relatively small. Pediatric brains were registered to the MNI adult brain template. However, possible age-specific differences in spatial normalization that arise from registering pediatric brains to the MNI adult brain template may have little effect on fMRI results.

Conclusion

This study provides evidence for functional abnormalities of DMN in first-episode EOS. These abnormalities could be a source of abnormal introspectively-oriented mental actives.  相似文献   

3.

Background

Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication.

Methods

A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC).

Results

Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus.

Conclusions

Our results suggest that adult ADHD is associated with neuroanatomical abnormalities mainly affecting the WM microstructure in fronto-parieto-temporal circuits that have been implicated in cognitive, emotional and visuomotor processes.  相似文献   

4.
Z Wang  Z Zhang  Q Jiao  W Liao  G Chen  K Sun  L Shen  M Wang  K Li  Y Liu  G Lu 《PloS one》2012,7(7):e39701

Objective

Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE.

Methods

Fifty-two patients with IGE characterized by generalized tonic-clonic seizures and 67 healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted MRI data were acquired for voxel-based morphometry (VBM) analysis, and resting-state blood-oxygenation level functional MRI data were acquired for functional connectivity analysis. The thalamic nuclei of bilateral medial dorsal nucleus (MDN) and pulvinar, as detected with decreased gray matter volumes in patients with IGE through VBM analysis, were selected as seed regions for functional connectivity analysis.

Results

Different alteration patterns were found in functional connectivity of the thalamic nuclei with decreased gray matter volumes in IGE. Seeding at the MDN, decreased connectivity in the bilateral orbital frontal cortex, caudate nucleus, putamen and amygdala were found in the patients (P<0.05 with correction). However, seeding at the pulvinar, no significant alteration of functional connectivity was found in the patients (P<0.05 with correction).

Conclusions

Some specific impairment of thalamic nuclei in IGE was identified using morphological and functional connectivity MRI approaches. These findings may strongly support the different involvement of the thalamocortical networks in IGE.  相似文献   

5.

Background

Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine.

Methodology/Principal Findings

Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM) and 43 gender-matched healthy controls (HC) by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients'' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks.

Conclusions

Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.  相似文献   

6.

Background

No reliable biomarkers are identified in KLS. However, few functional neuroimaging studies suggested hypoactivity in thalamic and hypothalamic regions during symptomatic episodes. Here, we investigated relative changes in regional brain metabolism in Kleine-Levin syndrome (KLS) during symptomatic episodes and asymptomatic periods, as compared to healthy controls.

Methods

Four drug-free male patients with typical KLS and 15 healthy controls were included. 18-F-fluorodeoxy glucose positron emission tomography (PET) was obtained in baseline condition in all participants, and during symptomatic episodes in KLS patients. All participants were asked to remain fully awake during the whole PET procedure.

Results

Between state-comparisons in KLS disclosed higher metabolism in paracentral, precentral, and postcentral areas, supplementary motor area, medial frontal gyrus, thalamus and putamen during symptomatic episodes, and decreased metabolism in occipital and temporal gyri. As compared to healthy control subjects, KLS patients in the asymptomatic phase consistently exhibited significant hypermetabolism in a wide cortical network including frontal and temporal cortices, posterior cingulate and precuneus, with no detected hypometabolism. In symptomatic KLS episodes, hypermetabolism was additionally found in orbital frontal and supplementary motor areas, insula and inferior parietal areas, and right caudate nucleus, and hypometabolism in the middle occipital gyrus and inferior parietal areas.

Conclusion

Our results demonstrated significant hypermetabolism and few hypometabolism in specific but widespread brain regions in drug-free KLS patients at baseline and during symptomatic episodes, highlighting the behavioral state-dependent nature of changes in regional brain activity in KLS.  相似文献   

7.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

8.

Background and Aims

Brain dysfunction in functional dyspepsia (FD) has been identified by multiple neuroimaging studies. This study aims to investigate the regional gray matter density (GMD) changes in meal-related FD patients and their correlations with clinical variables, and to explore the possible influence of the emotional state on FD patients’s brain structures.

Methods

Fifty meal-related FD patients and forty healthy subjects (HS) were included and underwent a structural magnetic resonance imaging scan. Voxel-based morphometry analysis was employed to identify the cerebral structure alterations in meal-related FD patients. Regional GMD changes'' correlations with the symptoms and their durations, respectively, have been analyzed.

Results

Compared to the HS, the meal-related FD patients showed a decreased GMD in the bilateral precentral gyrus, medial prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and midcingulate cortex (MCC), left orbitofrontal cortex (OFC) and right insula (p<0.05, FWE Corrected, Cluster size>50). After controlling for anxiety and depression, the meal-related FD patients showed a decreased GMD in the bilateral middle frontal gyrus, left MCC, right precentral gyrus and insula (p<0.05, FWE Corrected, Cluster size>50). Before controlling psychological factors, the GMD decreases in the ACC were negatively associated with the symptom scores of the Nepean Dyspepsia Index (NDI) (r = −0.354, p = 0.048, Bonferroni correction) and the duration of FD (r = −0.398, p = 0.02, Bonferroni correction) respectively.

Conclusions

The regional GMD of meal-related FD patients, especially in the regions of the homeostatic afferent processing network significantly differed from that of the HS, and the psychological factors might be one of the essential factors significantly affecting the regional brain structure of meal-related FD patients.  相似文献   

9.

Background

Previous studies have demonstrated that patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) differed at neural level. However, it remains unclear if these two subtypes of depression differ in the interhemispheric coordination. This study was undertaken for two purposes: (1) to explore the differences in interhemispheric coordination between these two subtypes by using the voxel-mirrored homotopic connectivity (VMHC) method; and (2) to determine if the difference of interhemispheric coordination can be used as a biomarker(s) to differentiate TRD from both TSD and healthy subjects (HS).

Methods

Twenty-three patients with TRD, 22 with TSD, and 19 HS participated in the study. Data of these participants were analyzed with the VMHC and seed-based functional connectivity (FC) approaches.

Results

Compared to the TSD group, the TRD group showed significantly lower VMHC values in the calcarine cortex, fusiform gyrus, hippocampus, superior temporal gyrus, middle cingulum, and precentral gyrus. Lower VMHC values were also observed in the TRD group in the calcarine cortex relative to the HS group. However, the TSD group had no significant change in VMHC value in any brain region compared to the HS group. Receiver operating characteristic curves (ROC) analysis revealed that the VMHC values in the calcarine cortex had discriminatory function distinguishing patients with TRD from patients with TSD as well as those participants in the HS group.

Conclusions

Lower VMHC values of patients with TRD relative to those with TSD and those in the HS group in the calcarine cortex appeared to be a unique feature for patients with TRD and it may be used as an imaging biomarker to separate patients with TRD from those with TSD or HS.  相似文献   

10.

Background

Strabismus is a disorder in which the eyes are misaligned. Persistent strabismus can lead to stereopsis impairment. The effect of strabismus on human brain is not unclear. The present study is to investigate whether the brain white structures of comitant exotropia patients are impaired using combined T1-weighted imaging and diffusion tensor imaging (DTI).

Principal Findings

Thirteen patients with comitant strabismus and twelve controls underwent magnetic resonance imaging (MRI) with acquisition of T1-weighted and diffusion tensor images. T1-weighted images were used to analyze the change in volume of white matter using optimized voxel-based morphology (VBM) and diffusion tensor images were used to detect the change in white matter fibers using voxel-based analysis of DTI in comitant extropia patients. VBM analysis showed that in adult strabismus, white matter volumes were smaller in the right middle occipital gyrus, right occipital lobe/cuneus, right supramarginal gyrus, right cingulate gyrus, right frontal lobe/sub-gyral, right inferior temporal gyrus, left parahippocampa gyrus, left cingulate gyrus, left occipital lobe/cuneus, left middle frontal gyrus, left inferior parietal lobule, and left postcentral gyrus, while no brain region with greater white matter volume was found. Voxel-based analysis of DTI showed lower fractional anisotropy (FA) values in the right middle occipital gyrus and right supramarginal gyrus in strabismus patients, while brain region with increased FA value was found in the right inferior frontal gyrus.

Conclusion

By combining VBM and voxel-based analysis of DTI results, the study suggests that the dorsal visual pathway was abnormal or impaired in patients with comitant exotropia.  相似文献   

11.

Objective

Maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) obtained by diffusion tensor imaging (DTI) can detect microscopic axonal changes by estimating the diffusivity of water molecules using magnetic resonance imaging (MRI). We applied an MRI voxel-based statistical approach to FA and ADC maps to evaluate microstructural abnormalities in the brain in narcolepsy and to investigate differences between patients having narcolepsy with and without cataplexy.

Methods

Twelve patients with drug-naive narcolepsy with cataplexy (NA/CA), 12 with drug-naive narcolepsy without cataplexy (NA w/o CA) and 12 age-matched healthy normal controls (NC) were enrolled. FA and ADC maps for these 3 groups were statistically compared by using voxel-based one-way ANOVA. In addition, we investigated the correlation between FA and ADC values and clinical variables in the patient groups.

Results

Compared to the NC group, the NA/CA group showed higher ADC values in the left inferior frontal gyrus and left amygdala, and a lower ADC value in the left postcentral gyrus. The ADC value in the right inferior frontal gyrus and FA value in the right precuneus were higher for NA/CA group than for the NA w/o CA group. However, no significant differences were observed in FA and ADC values between the NA w/o CA and NC groups in any of the areas investigated. In addition, no correlation was found between the clinical variables and ADC and FA values of any brain areas in these patient groups.

Conclusions

Several microstructural changes were noted in the inferior frontal gyrus and amygdala in the NA/CA but not in the NA w/o CA group. These findings suggest that these 2 narcolepsy conditions have different pathological mechanisms: narcolepsy without cataplexy form appears to be a potentially broader condition without any significant brain imaging differences from normal controls.  相似文献   

12.

Objective

Parkinson''s disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.

Methods

High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.

Results

Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.

Conclusion

These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.  相似文献   

13.

Background

The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA).

Principal Findings

Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients'' spectra are shifted towards higher frequencies.

Conclusion

In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity.  相似文献   

14.

Background

Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC) and Dorsal Attention (DAN) networks. No changes were found in the Salience Network (SN), a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions.

Methodology

Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC) of insular subregions.

Principal Findings

Analysis of FC with resting state fMRI (rs-FMRI) revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group.

Conclusions

Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action.

Trial Registration

ClinicalTrials.gov NCT01684306  相似文献   

15.

Objectives

The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD). However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex. In this study, we examined changes of thalamocortical functional connectivity after 36 hours of total sleep deprivation by using resting state function MRI (fMRI).

Materials and Methods

Fourteen healthy volunteers were recruited and performed fMRI scans before and after 36 hours of TSD. Seed-based functional connectivity analysis was employed and differences of thalamocortical functional connectivity were tested between the rested wakefulness (RW) and TSD conditions.

Results

We found that the right thalamus showed decreased functional connectivity with the right parahippocampal gyrus, right middle temporal gyrus and right superior frontal gyrus in the resting brain after TSD when compared with that after normal sleep. As to the left thalamus, decreased connectivity was found with the right medial frontal gyrus, bilateral middle temporal gyri and left superior frontal gyrus.

Conclusion

These findings suggest disruptive changes of the thalamocortical functional connectivity after TSD, which may lead to the decline of the arousal level and information integration, and subsequently, influence the human cognitive functions.  相似文献   

16.
Hypersensitivity in Borderline Personality Disorder during Mindreading   总被引:1,自引:0,他引:1  

Background

One of the core symptoms of borderline personality disorder (BPD) is the instability in interpersonal relationships. This might be related to existent differences in mindreading between BPD patients and healthy individuals.

Methods

We examined the behavioural and neurophysiological (fMRI) responses of BPD patients and healthy controls (HC) during performance of the ‘Reading the Mind in the Eyes’ test (RMET).

Results

Mental state discrimination was significantly better and faster for affective eye gazes in BPD patients than in HC. At the neurophysiological level, this was manifested in a stronger activation of the amygdala and greater activity of the medial frontal gyrus, the left temporal pole and the middle temporal gyrus during affective eye gazes. In contrast, HC subjects showed a greater activation in the insula and the superior temporal gyri.

Conclusion

These findings indicate that BPD patients are highly vigilant to social stimuli, maybe because they resonate intuitively with mental states of others.  相似文献   

17.

Objectives

Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD.

Materials and Methods

Fourteen healthy adult men aged 25.9±2.3 years (range, 18–28 years) were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW) and after 36 h of TSD.

Results

TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]). Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu) and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC) and right precentral gyrus.

Conclusion

These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD.  相似文献   

18.

Aim

We sought to use a regional homogeneity (ReHo) approach as an index in resting-state functional magnetic resonance imaging (fMRI) to investigate the features of spontaneous brain activity within the default mode network (DMN) in patients suffering from bipolar depression (BD).

Methods

Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD) total score, and ReHo in regions with significant group differences.

Results

Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group.

Conclusions

Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.  相似文献   

19.

Objectives

We investigated the neural basis of hallucinations Alzheimer''s disease (AD) by applying voxel-based morphometry (VBM) to anatomical and functional data from the AD Neuroimaging Initiative.

Methods

AD patients with hallucinations, based on the Neuropsychiatric Inventory (NPI-Q) (AD-hallu group; n = 39), were compared to AD patients without hallucinations matched for age, sex, educational level, handedness and MMSE (AD-c group; n = 39). Focal brain volume on MRI was analyzed and compared between the two groups according to the VBM method. We also performed voxel-level correlations between brain volume and hallucinations intensity. A similar paradigm was used for the PET analysis. “Core regions” (i.e. regions identified in both MRI and PET analyses, simply done by retaining the clusters obtained from the two analyses that are overlapping) were then determined.

Results

Regions with relative atrophy in association with hallucinations were: anterior part of the right insula, left superior frontal gyrus and lingual gyri. Regions with relative hypometabolism in association with hallucinations were a large right ventral and dorsolateral prefrontal area. "Core region" in association with hallucinations was the right anterior part of the insula. Correlations between intensity of hallucinations and brain volume were found in the right anterior insula, precentral gyrus, superior temporal gyrus, and left precuneus. Correlations between intensity of hallucinations and brain hypometabolism were found in the left midcingulate gyrus. We checked the neuropathological status and we found that the 4 patients autopsied in the AD-hallu group had the mixed pathology AD and Dementia with Lewy bodies (DLB).

Conclusion

Neural basis of hallucinations in cognitive neurodegenerative diseases (AD or AD and DLB) include a right predominant anterior-posterior network, and the anterior insula as the core region. This study is coherent with the top-down/bottom-up hypotheses on hallucinations but also hypotheses of the key involvement of the anterior insula in hallucinations in cognitive neurodegenerative diseases.  相似文献   

20.

Background

There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson''s disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism.

Methodology/Principal Findings

To this end, we conducted 18FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM.

Conclusion/Significance

These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号