首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal) and SUM225 (ErbB2-overexpressing) and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.  相似文献   

2.
The epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AR) have been shown to be co-over expressed in breast cancer. We have previously shown that an AR/EGFR autocrine loop is required for SUM149 human breast cancer cell proliferation, motility and invasion. We also demonstrated that AR can induce these altered phenotypes when expressed in the normal mammary epithelial cell line MCF10A, or by exposure of these cells to AR in the medium. In the present studies, we demonstrate that SUM149 cells and immortalized human mammary epithelial MCF10A cells that over express AR (MCF10A AR) or are cultured in the presence of exogenous AR, express higher levels of EGFR protein than MCF10A cells cultured in EGF. Pulse-chase analysis showed that EGFR protein remained stable in the presence of AR, yet was degraded in the presence of EGF. Consistent with this observation, tyrosine 1045 on the EGFR, the c-cbl binding site, exhibited less phosphorylation following stimulation with AR than following stimulation with EGF. Ubiquitination of the receptor was also dramatically less following stimulation with AR than following stimulation with EGF. Flow cytometry analysis showed that EGFR remained on the cell surface following stimulation with AR but was rapidly internalized following stimulation with EGF. Immunofluorescence and confocal microscopy confirmed the flow cytometry results. EGFR in MCF10A cells cultured in the presence of EGF exhibited a predominantly intracellular, punctate localization. In stark contrast, SUM149 cells and MCF10A cells growing in the presence of AR expressed EGFR predominantly on the membrane and at cell-cell junctions. We propose that AR alters EGFR internalization and degradation in a way that favors accumulation of EGFR at the cell surface and ultimately leads to changes in EGFR signaling.  相似文献   

3.
Previously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24− stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared with non-stem DCIS cells. We also found that the chemopreventive agent sulforaphane can target these DCIS stem-like cells, reduce aldehyde dehydrogenase 1 (ALDH1) expression, and decrease mammosphere and progenitor colony formation. Furthermore, we characterized exosomal trafficking of microRNAs in DCIS and found that several microRNAs (miRs) including miR-140, miR-29a, and miR-21 are differentially expressed in exosomes from DCIS stem-like cells. We found that SFN treatment could reprogram DCIS stem-like cells as evidenced by significant changes in exosomal secretion more closely resembling that of non-stem cancer cells. Finally, we demonstrated that exosomal secretion of miR-140 might impact signaling in nearby breast cancer cells.  相似文献   

4.

Background

CD44, a transmembrane glycoprotein, is a major receptor for extracellular proteins involved in invasion and metastasis of human cancers. We have previously demonstrated that the novel Gemini vitamin D analog BXL0124 [1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluro-cholecalciferol] repressed CD44 expression in MCF10DCIS.com basal-like human breast cancer cells and inhibited MCF10DCIS xenograft tumor growth. In the present study, we investigated potential factors downstream of CD44 and the biological role of CD44 repression by BXL0124 in MCF10DCIS cells.

Methods and Findings

The treatment with Gemini vitamin D BXL0124 decreased CD44 protein level, suppressed STAT3 signaling, and inhibited invasion and proliferation of MCF10DCIS cells. The interaction between CD44 and STAT3 was determined by co-immunoprecipitation. CD44 forms a complex with STAT3 and Janus kinase 2 (JAK2) to activate STAT3 signaling, which was inhibited by BXL0124 in MCF10DCIS cells. The role of CD44 in STAT3 signaling and invasion of MCF10DCIS cells was further determined by the knockdown of CD44 using small hairpin RNA in vitro and in vivo. MCF10DCIS cell invasion was markedly decreased by the knockdown of CD44 in vitro. The knockdown of CD44 also significantly decreased mRNA expression levels of invasion markers, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), in MCF10DCIS cells. In MCF10DCIS xenograft tumors, CD44 knockdown decreased tumor size and weight as well as invasion markers.

Conclusions

The present study identifies STAT3 as an important signaling molecule interacting with CD44 and demonstrates the essential role of CD44-STAT3 signaling in breast cancer invasion. It also suggests that repression of CD44-STAT3 signaling is a key molecular mechanism in the inhibition of breast cancer invasion by the Gemini vitamin D analog BXL0124.  相似文献   

5.
6.
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.  相似文献   

7.
李艳艳  陈龙  李玲  谭瑶  庞保平 《昆虫学报》2021,64(9):1020-1030
【目的】本研究旨在揭示内蒙古草原新害虫沙葱萤叶甲Galeruca daurica专性夏滞育相关的重要基因以及代谢通路。【方法】应用RNA-Seq技术,对沙葱萤叶甲成虫不同夏滞育阶段[滞育前期(PD)、滞育期(D)及滞育后期(TD)]进行转录组测序、分析及基因功能预测,基于RNA-Seq数据筛选夏滞育不同阶段差异表达基因;利用qPCR对基于RNA-Seq数据筛选的10个差异表达基因的表达水平进行验证。【结果】从9个文库中获得202 770 198 clean reads,将12 078 060条转录本组装获得82 292 条unigene,平均长度为783.59 bp,N50为1 545 bp。沙葱萤叶甲D vs PD和TD vs D 比较组分别有2 395(2 119上调和277下调)和62(59上调和3下调)个差异基因。KEGG分析表明,D vs PD和TD vs D比较组差异表达基因分别显著富集于糖孝解/糖异生通路和脂肪酸生物合成通路;此外,许多与钙离子信号转导相关的基因在滞育期间差异表达。10个差异表达基因的qPCR分析表明,RNA-Seq与qPCR结果高度一致。【结论】糖孝解/糖异生、脂肪酸生物合成及钙离子信号通路可能在沙葱萤叶甲滞育调节中起着重要的作用。本研究为进一步研究沙葱萤叶甲成虫专性夏滞育的分子机理奠定了基础。  相似文献   

8.
Amphiregulin (AR) autocrine loops have been associated with several types of cancer. We demonstrate that SUM149 breast cancer cells have a self-sustaining AR autocrine loop. SUM149 cells are epidermal growth factor (EGF)-independent for growth, and they overexpress AR mRNA, AR membrane precursor protein, and secreted AR relative to the EGF-dependent human mammary epithelial cell line MCF10A. MCF10A cells made to overexpress AR (MCF10A AR) are also EGF-independent for growth. Treatment with the pan-ErbB inhibitor CI1033 and the anti-EGF receptor (EGFR) antibody C225 demonstrated that ligand-mediated activation of EGFR is required for SUM149 cell proliferation. AR-neutralizing antibody significantly reduced both SUM149 EGFR activity and cell proliferation, confirming that an AR autocrine loop is required for mitogenesis in SUM149 cells. EGFR tyrosine phosphorylation was dramatically decreased in both SUM149 and MCF10A AR cells after inhibition of AR cleavage with the broad spectrum metalloprotease inhibitor GM6001, indicating that an AR autocrine loop is strictly dependent on AR cleavage in culture. However, a juxtacrine assay where fixed SUM149 cells and MCF10A AR cells were overlaid on top of EGF-deprived MCF10A cells showed that the AR membrane precursor can activate EGFR. SUM149 cells, MCF10A AR cells, and MCF10A cells growing in exogenous AR were all considerably more invasive and motile than MCF10A cells grown in EGF. Moreover, AR up-regulates a number of genes involved in cell motility and invasion in MCF10A cells, suggesting that an AR autocrine loop contributes to the aggressive breast cancer phenotype.  相似文献   

9.
This study aimed to explore the regulatory mechanism of metabolism of xenobiotics by cytochrome P450 during the differentiation process of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) and consummate the induction differentiation system of chicken embryonic stem cells (cESCs) into SSCs in vitro. We performed RNA-Seq in highly purified male ESCs, male primordial germ cells (PGCs), and SSCs that are associated with the male germ cell differentiation. Thereinto, the metabolism of xenobiotics by cytochrome P450 was selected and analyzed with Venny among male ESC vs male PGC, male PGC vs SSC, and male ESC vs SSC groups and several candidates differentially expressed genes (DEGs) were excavated. Finally, quantitative real-time PCR (qRT-PCR) detected related DEGs under the condition of retinoic acid (RA) induction in vitro, and the expressions were compared with RNA-Seq. By knocking down CYP1A1, we detected the effect of CYP1A1-mediated metabolism of xenobiotics by cytochrome P450 on male germ cell differentiation by qRT-PCR and immunocytochemistry. Results showed that 17,742 DEGs were found during differentiation of ESCs into SSCs and enriched in 72 differently significant pathways. Thereinto, the metabolism of xenobiotics by cytochrome P450 was involved in the whole differentiation process of ESCs into SSCs and several candidate DEGs: CYP1A1, CYP3A4, CYP2D6, ALDH3B1, and ALDH1A3 were expressed with the same trend with RNA-Seq. Knockdown of CYP1A1 caused male germ cell differentiation under restrictions. Our findings showed that the metabolism of xenobiotics by cytochrome P450 was significantly different during the process of male germ cell differentiation and was persistently activated when we induced cESCs to differentiate into SSCs with RA in vitro, which illustrated that the metabolism of xenobiotics by cytochrome P450 played a crucial role in the differentiation process of ESCs into SSCs.  相似文献   

10.
The diagnosis of ductal carcinoma in situ (DCIS) is an increasingly common event due to widespread use of screening mammography. However, appropriate clinical management of DCIS is a major challenge in the absence of prognostic markers. Tumor-initiating cells may be particularly relevant for disease pathogenesis; therefore, two markers associated with such cells, EZH2 and ALDH1, were evaluated. A cohort of 248 DCIS patients was used to determine the association of EZH2 and ALDH1 with ipsilateral breast event, DCIS recurrence and progression to invasive breast cancer (IBC). In this cohort, high EZH2 expression was associated with the risk of an ipsilateral breast event and DCIS recurrence but not invasive progression. ALDH1 expression was observed in both the tumor and stromal compartment; however, in neither compartment were ALDH1 levels independently associated with evaluated study endpoints. Interestingly, the combination of high EZH2 with high epithelial ALDH1 was associated with disease progression. Therefore, ALDH1 within the DCIS lesion can add to the prognostic significance of EZH2, particularly in the context of risk of development of invasive disease.  相似文献   

11.
Survivin is a key member of the inhibitor of apoptosis protein family, and is considered a promising therapeutic target due to its universal overexpression in cancers. Survivin is implicated in cellular radiation response through its role in apoptosis, cell division, and DNA damage response. In the present study, analysis of publically available data sets showed that survivin gene expression increased with breast cancer stage (p < 0.00001) and was significantly higher in estrogen receptor-negative cancers as compared to estrogen receptor-positive cancers (p = 9e-46). However, survivin was prognostic in estrogen receptor-positive tumors (p = 0.03) but not in estrogen receptor-negative tumors (p = 0.28). We assessed the effect of a survivin dominant-negative mutant on colony-formation (2D) and mammosphere-formation (3D) efficiency, and radiation response in the estrogen receptor-positive MCF7 and estrogen receptor-negative SUM149 breast cancer cell lines. The colony-formation efficiency was significantly lower in the dominant-negative survivin-transduced cells versus control MCF7 cells (0.42 vs. 0.58, p < 0.01), but it was significantly higher in dominant-negative population versus control-transduced SUM149 cells (0.29 vs. 0.20, p < 0.01). A similar, non-significant, trend in mammosphere-formation efficiency was observed. We compared the radiosensitivity of cells stably expressing dominant-negative survivin with their controls in both cell lines under 2D and 3D culture conditions following exposure to increasing doses of radiation. We found that the dominant-negative populations were radioprotective in MCF7 cells but radiosensitive in SUM149 cells compared to the control-transduced population; further, Taxol was synergistic with the survivin mutant in SUM149 but not MCF7. Our data suggests that survivin modulation influences radiation response differently in estrogen receptor-positive and estrogen receptor-negative breast cancer subtypes, warranting further investigation.  相似文献   

12.
Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under the same conditions. Cell signaling pathways and the subcellular localization of proteins can also be assessed.  相似文献   

13.
Studies have indicated that Nel-like molecule-1 (NELL-1) was an osteoblast-specific cytokine and some specific microRNAs (miRNAs) could serve as competing endogenous RNA (ceRNA) to partake in osteogenic differentiation of human adipose-derived stem cells (hASCs). The aim of this study was to explore the potential functional mechanisms of recombinant human NELL-1 protein (rhNELL-1) during hASCs osteogenic differentiation. rhNELL-1 was added to osteogenic medium to activate osteogenic differentiation of hASCs. High-throughput RNA sequencing (RNA-Seq) was performed and validated by real-time quantitative polymerase chain reaction. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to detect the functions of differentially expressed miRNAs and genes. Coding-noncoding gene co-expression network and ceRNA networks were constructed to predict the potential regulatory role of miRNAs. A total of 1010 differentially expressed miRNAs and 1762 differentially expressed messenger RNAs (mRNAs) were detected. miRNA-370-3p, bone morphogenetic protein 2 (BMP2), and parathyroid hormone like hormone (PTHLH) were differentially expressed during NELL-1-induced osteogenesis. Bioinformatic analyses demonstrated that these differentially expressed miRNAs and mRNAs enriched in Rap1 signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, Glucagon signaling pathway, and hypoxia-inducible factor-1 signaling pathway, which were important pathways related to osteogenic differentiation. In addition, miRNA-370-3p and has-miR-485-5p were predicted to interact with circ0001543, circ0002405, and ENST00000570267 in ceRNA networks. Based on the gain or loss of functional experiments by transfection, the results showed that miR-370-3p was a key regulator in osteogenic differentiation by targeting BMP2 and disturbing the expression of PTHLH, and participated in NELL-1-stimulated osteogenesis. The present study provided the primary data and evidence for further exploration on the roles of miRNAs and ceRNAs during NELL-1-induced ossification of hASCs.  相似文献   

14.
The human mammary gland is a complex and heterogeneous organ, where the interactions between mammary epithelial cells (MEC) and stromal fibroblasts are known to regulate normal biology and tumorigenesis. We aimed to longitudinally evaluate morphology and size of organoids in 3D co-cultures of normal (MCF10A) or pre-malignant (MCF10DCIS.com) MEC and hTERT-immortalized fibroblasts from reduction mammoplasty (RMF). This co-culture model, based on an isogenic panel of cell lines, can yield insights to understand breast cancer progression. However, 3D cultures pose challenges for quantitative assessment and imaging, especially when the goal is to measure the same organoid structures over time. Using optical coherence tomography (OCT) as a non-invasive method to longitudinally quantify morphological changes, we found that OCT provides excellent visualization of MEC-fibroblast co-cultures as they form ductal acini and remodel over time. Different concentrations of fibroblasts and MEC reflecting reported physiological ratios [1] were evaluated, and we found that larger, hollower, and more aspherical acini were formed only by pre-malignant MEC (MCF10DCIS.com) in the presence of fibroblasts, whereas in comparable conditions, normal MEC (MCF10A) acini remained smaller and less aspherical. The ratio of fibroblast to MEC was also influential in determining organoid phenotypes, with higher concentrations of fibroblasts producing more aspherical structures in MCF10DCIS.com. These findings suggest that stromal-epithelial interactions between fibroblasts and MEC can be modeled in vitro, with OCT imaging as a convenient means of assaying time dependent changes, with the potential for yielding important biological insights about the differences between benign and pre-malignant cells.  相似文献   

15.
16.
17.
Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem‐like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24‐ cell populations) and the mature luminal cells (CD49f‐EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label‐free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24‐, ALDH+ versus CD49f‐EpCAM+ and CD44+CD24‐ versus CD49f‐EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti‐CSC therapeutics.  相似文献   

18.
CEA cell adhesion molecule-1 (CEACAM1) is a cell-cell adhesion molecule that, paradoxically, is expressed in an apical location in normal breast epithelium. Strong lumenal membrane staining is observed in 100% of normal glands (11/11), low in atypical hyperplasia (2/6), high in cribiform ductal carcinoma in situ (DCIS) (8/8), but low in other types of DCIS (2/15). Although most invasive ductal carcinomas express CEACAM1 (21/26), the staining pattern tends to be weak and cytoplasmic in tumours with minimal lumena formation (grades 2-3), while there is membrane staining in well-differentiated tumours (grade 1). The 'normal' breast epithelial line MCF10F forms acini with lumena in Matrigel with apical membrane expression of CEACAM1. MCF7 cells that do not express CEACAM1 and fail to form lumena in Matrigel, revert to a lumen forming phenotype when transfected with the CEACAM1-4S but not the -4L isoform. CEACAM1 directly associates with and down-regulates the expression of beta1-integrin. Immuno-electron microscopy reveals numerous vesicles coated with CEACAM1 within the lumena, and as predicted by this finding, CEACAM1 is found in the lipid fraction of breast milk. Thus, CEACAM1 is a critical molecule in mammary morphogenesis and may play a role in the absorption of the lipid vesicles of milk in the infant intestinal tract.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号