共查询到20条相似文献,搜索用时 0 毫秒
1.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane. 相似文献
2.
Lairson LL Chiu CP Ly HD He S Wakarchuk WW Strynadka NC Withers SG 《The Journal of biological chemistry》2004,279(27):28339-28344
Lipopolysaccharyl-alpha-1,4-galactosyltransferase C (LgtC), a glycosyltransferase family 8 alpha-1,4-galactosyltransferase from Neisseria meningitidis, catalyzes the transfer of galactose from UDP galactose to terminal lactose-containing acceptor sugars with net retention of anomeric configuration. To investigate the potential role of discrete nucleophilic catalysis suggested by the double displacement mechanism generally proposed for retaining glycosyltransferases, the side chain amide of Gln-189, which is suitably positioned to act as the catalytic nucleophile of LgtC, was substituted with the more nucleophilic carboxylate-containing side chain of glutamate in the hope of accumulating a glycosyl-enzyme intermediate. The resulting mutant was subjected to kinetic, mass spectrometric, and x-ray crystallographic analysis. Although the K(m) for UDP-galactose is not significantly altered, the k(cat) was reduced to 3% that of the wild type enzyme. Electrospray mass spectrometric analysis revealed that a steady state population of the Q189E variant contains a covalently bound galactosyl moiety. Liquid chromatographic/mass spectrometric analysis of fragmented proteolytic digests identified the site of labeling not as Glu-189 but, surprisingly, as the sequentially adjacent Asp-190. However, the side chain carboxylate of Asp-190 is located 8.9 A away from the donor substrate in the available crystal structure. Kinetic analysis of a D190N mutant at this position revealed a k(cat) value 3000-fold lower than that of the wild type enzyme. A 2.6-A crystal structure of the Q189E mutant with bound uridine 5'-diphospho-2-deoxy-2-fluoro-alpha-d-galactopyranose revealed no significant perturbation of the mode of donor sugar binding nor of active site configuration. This is the first trapping of an intermediate in the active site of a retaining glycosyltransferase and, although not conclusive, implicates Asp-190 as an alternative candidate catalytic nucleophile, thereby rekindling a longstanding mechanistic debate. 相似文献
3.
Schiavon E Sacco T Cassulini RR Gurrola G Tempia F Possani LD Wanke E 《The Journal of biological chemistry》2006,281(29):20326-20337
Resurgent currents are functionally crucial in sustaining the high frequency firing of cerebellar Purkinje neurons expressing Na(v)1.6 channels. Beta-scorpion toxins, such as CssIV, induce a left shift in the voltage-dependent activation of Na(v)1.2 channels by "trapping" the IIS4 voltage sensor segment. We found that the dangerous Cn2 beta-scorpion peptide induces both the left shift voltage-dependent activation and a transient resurgent current only in human Na(v)1.6 channels (among 1.1-1.7), whereas CssIV did not induce the resurgent current. Cn2 also produced both actions in mouse Purkinje cells. These findings suggest that only distinct beta-toxins produce resurgent currents. We suggest that the novel and unique selectivity of Cn2 could make it a model drug to replace deep brain stimulation of the subthalamic nucleus in patients with Parkinson disease. 相似文献
4.
Jodene Eldstrom Donald A. McAfee Ying Dou Yundi Wang David Fedida 《The Journal of general physiology》2021,153(12)
KCNQ1 is a pore-forming K+ channel subunit critically important to cardiac repolarization at high heart rates. (2R)-N-[4-(4-methoxyphenyl)-2-thiazolyl]-1-[(4-methylphenyl)sulfonyl]-2 piperidinecarboxamide, or ML277, is an activator of this channel that rescues function of pathophysiologically important mutant channel complexes in human induced pluripotent stem cell–derived cardiomyocytes, and that therefore may have therapeutic potential. Here we extend our understanding of ML277 actions through cell-attached single-channel recordings of wild-type and mutant KCNQ1 channels with voltage sensor domains fixed in resting, intermediate, and activated states. ML277 has profound effects on KCNQ1 single-channel kinetics, eliminating the flickering nature of the openings, converting them to discrete opening bursts, and increasing their amplitudes approximately threefold. KCNQ1 single-channel behavior after ML277 treatment most resembles IO state-locked channels (E160R/R231E) rather than AO state channels (E160R/R237E), suggesting that at least during ML277 treatment, KCNQ1 does not frequently visit the AO state. Introduction of KCNE1 subunits reduces the effectiveness of ML277, but some enhancement of single-channel openings is still observed. 相似文献
5.
The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 A) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 A) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model. 相似文献
6.
Elliott DJ Neale EJ Aziz Q Dunham JP Munsey TS Hunter M Sivaprasadarao A 《The EMBO journal》2004,23(24):4717-4726
Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the prototypical Shaker potassium channel. We introduced pairs of cysteines, one in S4 and the other in S5, and examined proximity changes between each pair of cysteines during activation, using Cd2+ and copper-phenanthroline, which crosslink the cysteines with metal and disulphide bridges, respectively. Modelling of the results suggests a novel mechanism: in the resting state, the top of the S3b-S4 voltage sensor paddle lies close to the top of S5 of the adjacent subunit, but moves towards the top of S5 of its own subunit during depolarization--this motion is accompanied by a reorientation of S4 charges to the extracellular phase. 相似文献
7.
The mechanosensitive channel of large conductance, MscL, serves as a biological emergency release valve protecting bacteria from acute osmotic downshock, and is to date the best characterized mechanosensitive channel. The N-terminal region of the protein has been shown to be critical for function by random, site-directed, and deletion mutagenesis, yet is structurally poorly understood. One model proposes that the extreme N-termini form a cluster of amphipathic helices that serves as a cytoplasmic second gate, separated from the pore-forming transmembrane domain by a "linker". Here, we have utilized cysteine trapping of single-cysteine mutated channels to determine the proximity, within the homopentameric complex, of residues within and just peripheral to this proposed linker. Our results indicate that all residues in this region can form disulfide bridges, and that the percentage of dimers increases when the channel is gated in vivo. Functional studies suggest that oxidation traps one of these mutated channels, N15C, into a gating-transition state that retains the capacity to obtain both fully open and closed states. The data are not easily explained by current models for the smooth transition from closed-to-open states, but predict that an asymmetric movement of one or more of the subunits commonly occurs upon gating. 相似文献
8.
The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close. 相似文献
9.
The second and third basic residues of the S4 segment of domain 4 (D4:R2 and D4:R3) of the human skeletal muscle Na+ channel are known to be translocated from a cytoplasmic to an extracellular position during depolarization. Accessibilities of individual S4 residues were assayed by alteration of inactivation kinetics during modification of cysteine mutants by hydrophilic methanethiosulfonate reagents. The voltage dependences of the reaction rates are identical for extracellular application of cationic methanethiosulfonate-ethyltrimethylammonium (MTSET) and anionic methanethiosulfonate-ethylsulfonate (MTSES), suggesting that D4:R3C is situated outside the membrane electric field at depolarized voltages. The absolute rate of R3C modification is 281-fold greater for MTSET than for MTSES, however, suggesting that at depolarized voltages this S4 thiol resides in a negatively charged hydrophilic crevice. The two hydrophobic residues between D4:R2C and D4:R3C in the primary sequence (L1452 and A1453) are not externally exposed at any voltage. An alpha-helical representation of D4/S4 shows that the basic residues D4:R2 and D4:R3 are on the face opposite that of L1452 and A1453. We propose that in the depolarized conformation, the hydrophobic face of this portion of D4/S4 remains in contact with a hydrophobic region of the extracellular vestibule of the S4 channel. 相似文献
10.
《Biophysical journal》2021,120(18):3983-4001
The activation of voltage-dependent ion channels is associated with the movement of gating charges, which give rise to gating currents. Although gating currents from a single channel are too small to be detected, analysis of the fluctuations of macroscopic gating currents from a population of channels allows a good guess of their magnitude. The analysis of experimental gating current fluctuations, when interpreted in terms of a rate model of channel activation and assuming sufficiently high bandwidth, is in accordance with the presence of a main step along the activation pathway carrying a charge of 2.3–2.4 e0. To give a physical interpretation to these results and to relate them to the known atomic structure of the voltage sensor domain, we used a Brownian model of voltage-dependent gating based on atomic detail structure, that follows the laws of electrodynamics. The model predicts gating currents and gating current fluctuations essentially similar to those experimentally observed. The detailed study of the model output, also performed by making several simplifications aimed at understanding the basic dependencies of the gating current fluctuations, suggests that in real channels the voltage sensor moves along a sequence of intermediate states separated by relatively low (<5 kT) energy barriers. As a consequence, crossings of successive gating charges through the gating pore become very frequent, and the corresponding current shots are often seen to overlap because of the relatively high filtering. Notably, this limited bandwidth effect is at the origin of the relatively high single-step charge experimentally detected. 相似文献
11.
The tryptophan synthase bienzyme complex channels substrate indole between the alpha- and beta-sites via a 25 A long interconnecting tunnel. Channeling efficiency is dependent upon a conformational switch in alphabeta-dimeric units between open conformations of low activity to which substrates bind and closed conformations of high activity wherein substrates react. In experiments designed to gain a better understanding of the linkage between chemical steps and conformational transitions in the catalytic cycle, the novel amino acid dihydroiso-L-tryptophan (DIT) was used as an analogue of L-Trp. In the forward reaction (indoline + L-Ser) to synthesize DIT, the quinonoid species, E(Q)(indoline), is formed quickly, while in the reverse reaction (DIT cleavage), the accumulation of E(Q)(indoline) occurs very slowly. Nevertheless, when the alpha-site substrate analogue alpha-D,L-glycerol phosphate (GP) is bound, DIT cleavage was found to give a rapid formation and dissipation of E(Q)(indoline) followed by a very slow reappearance of E(Q)(indoline). This result led to the conclusion that the reaction of DIT proceeds quickly through the quinonoid state to give indoline and the alpha-aminoacrylate Schiff base, E(A-A), both in the absence and in the presence of GP. In the absence of GP the slow conversion of E(A-A) to pyruvate and ammonium ion limits the rate of accumulation of free indoline and therefore the rate of buildup of E(Q)(indoline). However, when GP is bound to the alpha-site, the indoline generated by DIT cleavage in the first turnover is trapped within the enzyme complex, shifting the equilibrium distribution strongly in favor of E(Q)(indoline) as a consequence of the high local concentration of sequestered indoline. This sequestering is the result of a switching of alphabeta-subunit pairs to a closed conformation when GP binds to the alpha-site and E(A-A) and/or E(Q)(indoline) is formed at the beta-site, thereby trapping indoline inside. The decay of the transiently formed E(Q)(indoline) occurs due to leakage of indoline from the closed system. 相似文献
12.
Hybrid voltage sensors (hVoS) probe membrane potential by coupling the fluorescence of membrane-anchored proteins to the movement of a membrane-embedded hydrophobic anion dipicrylamine. Fluorescence resonance energy transfer between these two components transduces voltage changes into fluorescence changes, providing a signal for imaging electrical activity in genetically targeted cells. To improve hVoS signals, we systematically varied the optical properties, membrane targeting motifs, and linkages of fluorescent proteins to optimize the normalized fluorescence change (ΔF/F) and signal/noise ratio. The best results were obtained with cerulean fluorescent protein tagged N-terminally with a GAP43 motif and C-terminally with a truncated h-ras motif. With 100 mV steps in PC12 cells, this probe produced ΔF/F = 26% (4 μM dipicrylamine), which was threefold greater than that obtained with the original farnesylated EGFP construct. We also obtained a fivefold greater signal/noise ratio, which was 70% of a theoretical optimum. We designate this GAP43-CerFP-t-h-ras construct as hVoS 2.0. With the aid of a theoretical analysis, we estimated that hVoS 2.0 places its fluorophore ∼40 Å from the bilayer midplane. hVoS 2.0 performed well in cultured hippocampal neurons, where single action potentials produced clear fluorescence changes in a single trial. This improved probe should help investigators image voltage in genetically targeted neurons. 相似文献
13.
Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. 相似文献
14.
Xiao Y Bingham JP Zhu W Moczydlowski E Liang S Cummins TR 《The Journal of biological chemistry》2008,283(40):27300-27313
Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration. 相似文献
15.
《生物化学与生物物理学报:生物膜》2018,1860(5):981-990
The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K+ channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. 相似文献
16.
Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs. 相似文献
17.
Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette 下载免费PDF全文
Ying L White SS Bruckbauer A Meadows L Korchev YE Klenerman D 《Biophysical journal》2004,86(2):1018-1027
The study of the properties of DNA under high electric fields is of both fundamental and practical interest. We have exploited the high electric fields produced locally in the tip of a nanopipette to probe the motion of double- and single-stranded 40-mer DNA, a 1-kb single-stranded DNA, and a single-nucleotide triphosphate (dCTP) just inside and outside the pipette tip at different frequencies and amplitudes of applied voltages. We used dual laser excitation and dual color detection to simultaneously follow two fluorophore-labeled DNA sequences with millisecond time resolution, significantly faster than studies to date. A strong trapping effect was observed during the negative half cycle for all DNA samples and also the dCTP. This effect was maximum below 1 Hz and decreased with higher frequency. We assign this trapping to strong dielectrophoresis due to the high electric field and electric field gradient in the pipette tip. Dielectrophoresis in electrodeless tapered nanostructures has potential applications for controlled mixing and manipulation of short lengths of DNA and other biomolecules, opening new possibilities in miniaturized biological analysis. 相似文献
18.
Voltage-gated ion channels respond to changes in membrane potential by movement of their voltage sensors across the electric field between cytoplasmic and extracellular solutions. The principal voltage sensors in these proteins are positively charged S4 segments. The absolute magnitude of S4 movement discriminates two competing classes of gating models. In one class, the movement is <10 Angstrom due to the fact that the electric field is focused by aqueous crevices in the channel protein. In an alternative model, based in part on the crystal structure of a potassium channel, the side chains of S4 arginines move their charges across the bilayer's electric field, a distance of >25 Angstrom. Here, using tethered charges attached to an S4 segment, we provide evidence that the electric field falls across a distance of <4 Angstrom, supporting a model in which the relative movement between S4 and the electric field is very small. 相似文献
19.
20.
Cestèle S Yarov-Yarovoy V Qu Y Sampieri F Scheuer T Catterall WA 《The Journal of biological chemistry》2006,281(30):21332-21344
Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states. 相似文献