首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs) against DENV4. Using plaque reduction neutralization test (PRNT), we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP) mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine.  相似文献   

2.

Background

Dengue virus (DENV), a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB) probe approach was used to develop an improved real time RT-PCR (qRT-PCR) for DENV in this study.

Results

The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE), West Nile (WN), Chikungunya (CHK) viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples.

Conclusion

We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The ability of the assay to detect DENV-2 in inoculated mosquitoes makes it a potential tool for detecting DENV in field-caught mosquitoes.  相似文献   

3.
Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes – NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.  相似文献   

4.
Dengue virus (DENV) infection is a disease that is endemic to many parts of the world, and its increasing prevalence ranks it among the diseases considered to be a significant threat to public health. The clinical manifestations of DENV infection range from mild dengue fever (DF) to more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased proinflammatory cytokines and vascular permeability, both of which cause organ injury, are the hallmarks of severe dengue disease. Signs of liver injury were observed in studies using hepatic cell lines, mouse models, and autopsy specimens from DENV-infected patients, and these signs substantiated the effects of inflammatory responses and hepatic cell apoptosis. Mitogen-activated protein kinases (MAPK) are involved in inflammatory responses and cellular stress during viral infections. The roles of MAPK signaling in DENV infection were reviewed, and published data indicate MAPK signaling to be involved in inflammatory responses and hepatic cell apoptosis in both in vitro cultures and in vivo models. Modulation of MAPK signaling ameliorates the inflammatory responses and hepatic cell apoptosis in DENV infection. This accumulation of published data relative to the role of MAPK signaling in inflammatory responses and cell apoptosis in DENV infection is elucidatory, and may help to accelerate the development of novel or repositioned therapies to treat this unpredictable and often debilitating disease.  相似文献   

5.
6.

Background

Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.

Methods and Findings

We evaluated serum samples from 80 residents of a dengue endemic country, Malaysia, for neutralizing activity, and infection-enhancing activity at 1∶10 serum dilution by using FcγR-negative BHK cells and FcγR-expressing BHK cells. The serum samples consisted of a panel of patients with acute DENV infection (31%, 25/80) and a panel of donors without acute DENV infection (69%, 55/80). A high proportion of the tested serum samples (75%, 60/80) demonstrated DENV neutralizing activity (PRNT50≥10) and infection-enhancing activity. Eleven of 18 serum samples from patients with acute secondary DENV infection demonstrated neutralizing activity to the infecting serotype determined by using FcγR-negative BHK cells (PRNT50≥10), but not when determined by using FcγR-expressing cells.

Conclusion

Human serum samples with low neutralizing activity determined by using FcγR-negative cells showed DENV infection-enhancing activity using FcγR-expressing cells, whereas those with high neutralizing activity determined by using FcγR-negative cells demonstrate low or no infection-enhancing activity using FcγR-expressing cells. The results suggest an inverse relationship between neutralizing antibody titer and infection-enhancing activity, and that neutralizing activity determined by using FcγR-expressing cells, and not the activity determined by using FcγR-negative cells, may better reflect protection to DENV infection in vivo.  相似文献   

7.

Background

Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood.

Methodology/Principal findings

Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone.We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus.

Conclusions/significance

The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.  相似文献   

8.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   

9.
10.
Aims: To investigate the in vitro antiviral activity of Distictella elongata (Vahl) Urb. ethanol extracts from leaves (LEE), fruits (FEE), stems and their main components. Methods and Results: The antiviral activity was evaluated against human herpesvirus type 1 (HSV‐1), murine encephalomyocarditis virus (EMCV), vaccinia virus Western Reserve (VACV‐WR) and dengue virus 2 (DENV‐2) by the 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) colorimetric assay. LEE presented anti‐HSV‐1 [EC50 142·8 ± 5·3 μg ml?1; selectivity index (SI) 2·0] and anti‐DENV‐2 activity (EC50 9·8 ± 1·3 μg ml?1; SI 1·5). The pectolinarin ( 1 ) isolated from LEE was less active against HSV‐1 and DENV‐2. A mixture of the triterpenoids ursolic, pomolic and oleanolic acids was also obtained. Ursolic and oleanolic acids have shown antiviral activity against HSV‐1. A mixture of pectolinarin ( 1 ) and acacetin‐7‐O‐rutinoside ( 2 ) was isolated from FEE and has presented anti‐DENV‐2 activity (EC50 11·1 ± 1·6 μg ml?1; SI > 45). Besides the antiviral activity, D. elongata has disclosed antioxidant effect. Conclusions: These data shows that D. elongata has antiviral activity mainly against HSV‐1 and DENV‐2, besides antioxidant activity. These effects might be principally attributed to flavonoids isolated. Significance and Impact of the Study: Distictella elongata might be considered a promising source of anti‐dengue fever phytochemicals.  相似文献   

11.

Abstract/Background

Dengue is the most important arthropod borne viral disease worldwide in terms of morbidity and mortality and is caused by any of the four serotypes of dengue virus (DENV-1 to 4). Brazil is responsible for approximately 80% of dengue cases in the Americas, and since the introduction of dengue in 1986, a total of 5,944,270 cases have been reported including 21,596 dengue hemorrhagic fever and 874 fatal cases. DENV can infect many cell types and cause diverse clinical and pathological effects. The goal of the study was to investigate the usefulness of NS1 capture tests as an alternative tool to detect DENV in tissue specimens from previously confirmed dengue fatal cases (n = 23) that occurred in 2002 in Brazil.

Methodology/Principal Findings

A total of 74 tissue specimens were available: liver (n = 23), lung (n = 14), kidney (n = 04), brain (n = 10), heart (n = 02), skin (n = 01), spleen (n = 15), thymus (n = 03) and lymph nodes (n = 02). We evaluated three tests for NS1 antigen capture: first generation Dengue Early ELISA (PanBio Diagnostics), Platelia NS1 (BioRad Laboratories) and the rapid test NS1 Ag Strip (BioRad Laboratories). The overall dengue fatal case diagnosis based on the tissues analyzed by Dengue Early ELISA, Platelia NS1 and the NS1 Ag Strip was 34.7% (08/23), 60.8% (14/23) and 91.3% (21/23), respectively. The Dengue Early ELISA detected NS1 in 22.9% (17/74) of the specimens analyzed and the Platelia NS1 in 45.9% (34/74). The highest sensitivity (78.3%; 58/74) was achieved by the NS1 Ag Strip, and the differences in the sensitivities were statistically significant (p<0.05). The NS1 Ag Strip was the most sensitive in liver (91.3%; 21/23), lung (71.4%; 10/14), kidney (100%; 4/4), brain (80%; 8/10), spleen (66.6%, 10/15) and thymus (100%, 3/3) when compared to the other two ELISA assays.

Conclusions/Significance

This study shows the DENV NS1 capture assay as a rapid and valuable approach to postmortem dengue confirmation. With an increasing number of DHF and fatal cases, the availability of new approaches useful for cases confirmation plays an important tool for the disease surveillance.  相似文献   

12.
Dengue is a potentially fatal acute febrile illness caused by four mosquito-transmitted dengue viruses (DENV-1–4). Although dengue outbreaks regularly occur in many regions of the Pacific, little is known about dengue in the Republic of the Marshall Islands (RMI). To better understand dengue in RMI, we investigated an explosive outbreak that began in October 2011. Suspected cases were reported to the Ministry of Health, serum specimens were tested with a dengue rapid diagnostic test (RDT), and confirmatory testing was performed using RT-PCR and IgM ELISA. Laboratory-positive cases were defined by detection of DENV nonstructural protein 1 by RDT, DENV nucleic acid by RT-PCR, or anti-DENV IgM antibody by RDT or ELISA. Secondary infection was defined by detection of anti-DENV IgG antibody by ELISA in a laboratory-positive acute specimen. During the four months of the outbreak, 1,603 suspected dengue cases (3% of the RMI population) were reported. Of 867 (54%) laboratory-positive cases, 209 (24%) had dengue with warning signs, six (0.7%) had severe dengue, and none died. Dengue incidence was highest in residents of Majuro and individuals aged 10–29 years, and ∼95% of dengue cases were experiencing secondary infection. Only DENV-4 was detected by RT-PCR, which phylogenetic analysis demonstrated was most closely related to a virus previously identified in Southeast Asia. Cases of vertical DENV transmission, and DENV/Salmonella Typhi and DENV/Mycobacterium leprae co-infection were identified. Entomological surveys implicated water storage containers and discarded tires as the most important development sites for Aedes aegypti and Ae. albopictus, respectively. Although this is the first documented dengue outbreak in RMI, the age groups of cases and high prevalence of secondary infection demonstrate prior DENV circulation. Dengue surveillance should continue to be strengthened in RMI and throughout the Pacific to identify and rapidly respond to future outbreaks.  相似文献   

13.
Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations.Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved.  相似文献   

14.

Introduction

Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus.

Methodology/Principal Findings

Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes.

Conclusions/Significance

Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.  相似文献   

15.

Background

Mosquito-borne dengue virus (DENV, genus Flavivirus) has emerged as a major threat to global human health in recent decades, and novel strategies to contain the escalating dengue fever pandemic are urgently needed. RNA interference (RNAi) induced by exogenous small interfering RNAs (siRNAs) has shown promise for treatment of flavivirus infections in hosts and prevention of transmission by vectors. However, the impact of RNAi triggered by authentic virus infection on replication of DENV, or any flavivirus, has received little study. The objectives of the current study were threefold: first, to assess the utility of Drosophila melanogaster S2 cells for the study of DENV, second to investigate the impact of multiple enzymes in the RNAi pathway on DENV replication; and third to test for variation in the response of the four serotypes of DENV to modulation of RNAi.

Results

Three strains from each of the four DENV serotypes showed replication in S2 cells following infection at multiplicity of infection (MOI) 0.1 and MOI 10; each strain achieved titers > 4.0 log10pfu/ml five days after infection at MOI 10. The four serotypes did not differ in mean titer. S2 cells infected with DENV-1, 2, 3 or 4 produced siRNAs, indicating that infection triggered an RNAi response. Knockdown of one of the major enzymes in the RNAi pathway, Dicer-2 (Dcr-2), resulted in a 10 to 100-fold enhancement of replication of all twelve strains of DENV in S2 cells. While serotypes did not differ in their average response to Dcr-2 knockdown, strains within serotypes showed significant differences in their sensitivity to Dcr-2 knockdown. Moreover, knockdown of three additional components of the RNAi pathway, Argonaute 2 (Ago-2), Dcr-1 and Ago-1, also resulted in a significant increase in replication of the two DENV strains tested, and the magnitude of this increase was similar to that resulting from Dcr-2 knockdown.

Conclusions

These findings indicate that DENV can replicate in Drosophila S2 cells and that the RNAi pathway plays a role in modulating DENV replication in these cells. S2 cells offer a useful cell culture model for evaluation of the interaction between DENV and the RNAi response.  相似文献   

16.
Dengue fever and dengue hemorrhagic fever are important diseases worldwide. Although antibody-dependent enhancement of infection has been proposed as a mechanism for increased disease severity, enhancing antibodies in endemic people have not been thoroughly investigated. Recently, we established a serological assay system to measure the balance of enhancing and neutralizing activities, which provides useful information for estimating in vivo antibody status. We measured the balance of these activities against four dengue virus (DENV) types in endemic populations, and analyzed the proportion of sera containing enhancing and neutralizing antibodies. Predominantly healthy Filipino children were used for analysis, although a population of Indonesian children was also investigated. In the Filipino population, the highest proportion of neutralizing activities was shown against DENV2, followed by DENV1. A greater proportion of sera exhibited enhancing rather than neutralizing antibodies against other virus types. Neutralizing activities were complement-dependent, while enhancing activities were complement-independent. The Indonesian population showed a similar dengue antibody status. Our results indicate that a relatively high proportion of endemic children possessed complement-independent enhancing antibodies against some DENV types.  相似文献   

17.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

18.
Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts.  相似文献   

19.

Background

Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes.

Methods

To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution.

Results

Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus.

Conclusions

This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs.  相似文献   

20.
BackgroundAccurate, rapid, and early diagnosis of dengue virus (DENV) infections is essential for optimal clinical care. Here, we evaluated the efficacy of the quantitative real-time PCR (qRT-PCR)-LightMix dengue virus EC kit for DENV detection using samples from a dengue outbreak in Taiwan in 2015.MethodsSera from patients with suspected DENV infection were analyzed and compared using the LightMix kit, a Dengue NS1 Ag + Ab Combo kit for detection of NS1 antigen and DENV-specific IgM and IgG antibodies, and an “in-house” qualitative DENV-specific RT-PCR assay.ResultsA total of 8,989, 8,954, and 1581 samples were subjected to NS1 antigen detection, IgM and IgG detection, and LightMix assays, respectively. The LightMix assay yielded a linear curve for viral loads (VL) between 102 and 106 copies/reaction, and the minimum detection limits for DENV serotype 1 (DENV1) and DENV2, DENV3, and DENV4 were 1, 10, and 100 focus forming units (FFU)/mL, respectively. There was 88.9% concordance between the results obtained using the NS1 antigen combo kit and by LightMix analysis, and the diagnostic sensitivity and specificity of the two methods were 89.4 and 100%, and 84.7 and 100%, respectively. Notably, fatal cases were attributed to DENV2 infection, and 79.5% (27/34) of these cases occurred in patients ≥ 71 years of age. Among these older patients, 82.3% (14/17) were NS1/IgM/IgG (+/-/-), exhibiting VLs between 106–109 copies/mL, which was markedly higher than the rate observed in the other age groups.ConclusionsThe LightMix assay was effective for early diagnosis of DENV infection. Our data indicate that high VLs during primary infection in elderly patients may be a positive predictor for severe illness, and may contribute to high mortality rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号