首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular eukaryotic mRNAs (except organellar) contain at the 5' terminus the structure m7(5')Gppp(5')N (where N is any nucleotide), termed cap. Cap recognition by eukaryotic initiation factor eIF-4F plays an important role in regulating the overall rate of translation. eIF-4F is believed to mediate the melting of mRNA 5' end secondary structure and facilitate 43S ribosome binding to capped mRNAs. eIF-4E, the cap-binding subunit of eIF-4F, plays an important role in cell growth; its overexpression results in malignant transformation of rodent cells, and its phosphorylation is implicated in signal transduction pathways of mitogens and growth factors. The molecular mechanism by which eIF-4E transforms cells is not known. Here, we report that overexpression of eIF-4E facilitates the translation of mRNAs containing excessive secondary structure in their 5' non-coding region. This effect may represent one mechanism by which eIF-4E regulates cell growth and transforms cells in culture.  相似文献   

2.
Proliferation and cell cycle progression in response to growth factors require de novo protein synthesis. It has been proposed that binding of the eukaryotic translation initiation factor 4E (eIF-4E) to the inhibitory protein 4BP-1 blocks translation by preventing access of eIF-4G to the 5' cap of the mRNA. The signal for translation initiation is thought to involve phosphorylation of 4BP-1, which causes it to dissociate from eIF-4E and allows eIF-4G to localize to the 5' cap. It has been suggested that the ability of the macrolide antibiotic rapamycin to inhibit 4BP-1 phosphorylation is responsible for the potent antiproliferative property of this drug. We now show that rapamycin-resistant cells exhibited normal proliferation despite dephosphorylation of 4BP-1 that allows it to bind to eIF-4E. Moreover, despite rapamycin-induced dephosphorylation of 4BP-1, eIF-4E-eIF-4G complexes (eIF-4F) were still detected. In contrast, amino acid withdrawal, which caused a similar degree of 4BP-1 dephosphorylation, resulted in dissociation of the eIF-4E-eIF-4G complex. Thus, 4BP-1 dephosphorylation is not equivalent to eIF-4E inactivation and does not explain the antiproliferative property of rapamycin.  相似文献   

3.
Translation initiation factor eIF-4E, which binds to the 5' cap structure of eukaryotic mRNAs, is believed to play an important role in the control of cell growth. Consistent with this, overexpression of eIF-4E in fibroblasts results in their malignant transformation. The activity of eIF-4E is thought to be regulated by phosphorylation on a single serine residue (Ser-53). Treatment of rat pheochromocytoma (PC12) cells with nerve growth factor (NGF) strongly curtails their growth and causes their differentiation into cells that resemble sympathetic neurons. The present study shows that eIF-4E is rapidly phosphorylated in PC12 cells upon NGF treatment, resulting in a significant increase in the steady-state levels of the phosphorylated protein. In contrast, epidermal growth factor, a factor which elicits a weak mitogenic response in PC12 cells, did not significantly enhance eIF-4E phosphorylation. We also show that although the mitogen and tumor promoter, phorbol 12-myristate-13-acetate, is able to induce phosphorylation of eIF-4E in PC12 cells, the NGF-mediated increase is primarily a protein kinase C-independent response. The NGF-induced enhancement of eIF-4E phosphorylation is abrogated in PC12 cells expressing a dominant inhibitory ras mutant (Ser-17 replaced by Asn), indicating that eIF-4E phosphorylation is dependent on a ras signalling pathway. As phosphorylation of eIF-4E effects translation initiation, these results suggest that NGF-mediated and ras-dependent eIF-4E phosphorylation may play a role in switching the pattern of gene expression during the differentiation of PC12 cells.  相似文献   

4.
5.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

6.
Phosphorylation by protein kinase C of the mRNA cap binding protein purified as part of a cap binding protein complex (eIF-4F) or as a single protein (eIF-4E), has been examined. Significant phosphorylation (up to 1 mol of phosphate/mol of p25 subunit) occurs only when the protein is part of the eIF-4F complex. With purified eIF-4E, using the same conditions, up to 0.1 mol of phosphate can be incorporated. Tryptic phosphopeptide maps show that the site phosphorylated in the Mr 25,000 subunit of eIF-4F (eIF-4F p25) is the same as that modified in purified eIF-4E. Kinetic measurements obtained from initial rates indicate that the Km values for eIF-4F and eIF-4E are similar, although the Vmax is 5-6 times higher for the complex. Dephosphorylation of eIF-4F p25, previously phosphorylated with protein kinase C, occurs in reticulocyte lysate with a half-life of 15-20 min, whereas little dephosphorylation is observed after 15 min with the purified phosphorylated eIF-4E. Phosphorylation of eIF-4F on the p220 and p25 subunits does not affect the stability of the complex as indicated by gel filtration on Sephacryl S-300. However, addition of non-phosphorylated eIF-4E to the phosphorylated complex results in the dissociation of the complex. These results suggest that interaction of p25 with other subunits in the complex greatly affects phosphorylation/dephosphorylation of p25. Since the rate of phosphorylation/dephosphorylation is significantly greater in the complex, regulation of the cap binding protein by phosphorylation appears to occur primarily on eIF-4F.  相似文献   

7.
Recognition of the cap structure at the 5' end of mRNA is one of the first events in initiation of eukaryotic translation. This step is mediated by the translation initiation factor 4F (eIF-4F). In mammalian cells this factor is composed of the cap-binding protein eIF-4E, eIF-4A, and a 220-kDa polypeptide. In yeast Saccharomyces cerevisiae, eIF-4E is found associated with a 150-kDa protein (p150) and a 20-kDa protein (p20). The resulting protein complex is proposed to represent yeast eIF-4F. To study the functions of p150 and p20 and their interaction with eIF-4E, we disrupted the genes encoding p150 and p20 and analyzed the effects on protein complex formation and cell viability. Yeast cells with single and double disruptions of the genes encoding p150 and p20 are viable, but p150 single and p150/p20 double disruptions show a slow growth phenotype. Gel chromatography and immunoadsorption experiments with a monoclonal anti-eIF-4E antibody coupled to protein G-Sepharose show that both p150 and p20 bind independently of each other to eIF-4E.  相似文献   

8.
Eukaryotic initiation factor 4E (eIF-4E) is a 25-kDa phosphoprotein that binds to the 7-methylguanosine cap of mRNA and acts, along with other eIF-4 polypeptides, to unwind mRNA secondary structure at the 5' terminus. Recent studies have indicated that eIF-4E acts as a protooncogene, but only in its phosphorylated state. In order to determine the role of eIF-4E in oncogenesis, we examined its regulation and expression in cloned rat embryo fibroblasts transformed with the Harvey ras (Ha-ras) oncogene. The expression of Ha-ras increased the rate of protein synthesis but did not increase the levels of eIF-4E mRNA or protein. However, a dramatic increase (7-fold) in phosphate incorporation into eIF-4E was observed. The percentage of eIF-4E in the phosphorylated state was the same in transfected and control cells, indicating that both phosphorylation and dephosphorylation of eIF-4E were increased. Phosphopeptide mapping of eIF-4E from transformed cells indicated a single site of phosphorylation at Ser-53, which is the same as that identified previously in eIF-4E from reticulocytes and HeLa cells. These results indicate that p21ras is part of the signal transduction pathway leading to phosphorylation of eIF-4E. These findings also provide a potential mechanism for cell transformation by p21ras which involves the preferential stimulation of translation of certain mRNAs.  相似文献   

9.
Multiple mRNAs encode the murine translation initiation factor eIF-4E   总被引:6,自引:0,他引:6  
All eukaryotic cellular mRNAs (except organellar) possess at their 5' end the structure m7GpppX (where X is any nucleotide) termed the "cap." The cap structure facilitates the melting of mRNA 5' secondary structure through the action of initiation factor-4F (eIF-4F) in conjunction with eIF-4B. eIF-4F consists of three subunits of which one, eIF-4E (eIF-4E has recently been designated eIF-4 alpha according to the Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (Safer, B. (1989) Eur. J. Biochem. 186, 1-3)), contains the cap binding site. Several lines of evidence suggest that eIF-4E regulates the rate of translation initiation. Consequently, changes in cellular eIF-4E levels could control growth and differentiation. To investigate the possibility that eIF-4E expression is regulated, we studied the pattern of eIF-4E expression in several cell lines. Here, we show the existence of multiple mRNAs for eIF-4E that are generated by differential polyadenylation. In addition, we show tissue-specific differences in eIF-4E mRNA expression and utilization of polyadenylation sites.  相似文献   

10.
A fundamental control point in the regulation of the initiation of protein synthesis is the formation of the eukaryotic initiation factor 4F (eIF-4F) complex. The formation of this complex depends upon the availability of the mRNA cap binding protein, eIF-4E, which is sequestered away from the translational machinery by the tight association of eIF-4E binding proteins (4E-BPs). Phosphorylation of 4E-BP1 is critical in causing its dissociation from eIF-4E, leaving 4E available to form translationally active eIF-4F complexes, switching on mRNA translation. In this report, we provide the first evidence that the phosphorylation of 4E-BP1 increases during mitosis and identify Ser-65 and Thr-70 as phosphorylated sites. Phosphorylation of Thr-70 has been implicated in the regulation of 4E-BP1 function, but the kinase phosphorylating this site was unknown. We show that the cyclin-dependent kinase, cdc2, phosphorylates 4E-BP1 at Thr-70 and that phosphorylation of this site is permissive for Ser-65 phosphorylation. Crucially, the increased phosphorylation of 4E-BP1 during mitosis results in its complete dissociation from eIF-4E.  相似文献   

11.
Eukaryotic translation initiation factor 4E (eIF-4E), which possesses cap-binding activity, functions in the recruitment of mRNA to polysomes as part of a three-subunit complex, eIF-4F (cap-binding complex). eIF-4E is the least abundant of all translation initiation factors and a target of growth regulatory pathways. Recently, two human cDNAs encoding novel eIF-4E-binding proteins (4E-BPs) which function as repressors of cap-dependent translation have been cloned. Their interaction with eIF-4E is negatively regulated by phosphorylation in response to cell treatment with insulin or growth factors. The present study aimed to characterize the molecular interactions between eIF-4E and the other subunits of eIF-4F and to similarly characterize the molecular interactions between eIF-4E and the 4E-BPs. A 49-amino-acid region of eIF-4 gamma, located in the N-terminal side of the site of cleavage by Picornaviridae protease 2A, was found to be sufficient for interacting with eIF-4E. Analysis of deletion mutants in this region led to the identification of a 12-amino-acid sequence conserved between mammals and Saccharomyces cerevisiae that is critical for the interaction with eIF-4E. A similar motif is found in the amino acid sequence of the 4E-BPs, and point mutations in this motif abolish the interaction with eIF-4E. These results shed light on the mechanisms of eIF-4F assembly and on the translational regulation by insulin and growth factors.  相似文献   

12.
Eukaryotic initiation factor-4E (eIF-4E) binds to the cap structure of eukaryotic mRNAs and is a component of the cap-binding protein complex eIF-4F. eIF-4E is present in cells in limiting concentrations and is phosphorylated both in vivo and in vitro by protein kinase C (PKC). Recently, eIF-4E has been implicated as an intracellular transducer of extracellular growth signals; microinjection of recombinant eIF-4E into quiescent NIH 3T3 cells induced DNA synthesis. In the present report, the mitogenic activity of eIF-4E was examined after coinjection with PKC. Recombinant eIF-4E was phosphorylated by PKC at the same amino acid that is phosphorylated in cultured cells and reticulocytes in response to phorbol ester. At limiting concentrations of eIF-4E, coinjection with PKC induced a fivefold increase in the mitogenic activity of eIF-4E. Injection of PKC alone or coinjection of eIF-4E with cAMP-dependent protein kinase (PKA) or the Raf protein had no effect. These results suggest that the mitogenic activity of eIF-4E is enhanced by PKC-specific phosphorylation and that phosphate addition is a rate-limiting step in eIF-4E activity.  相似文献   

13.
14.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Regulation of the rate of protein synthesis is important in the control of cellular proliferation. Changes in the rate of protein translation are brought about primarily at the level of initiation, which is usually rate limiting. This regulation involves the reversible phosphorylation of key initiation factors. Translation initiation factors eIF-4F, eIF-4B, and ribosomal protein S6 are phosphorylated in response to a wide variety of mitogens, growth factors, and tyrosine kinase oncogenes. Thus, translation initiation factors are important components of signal transduction pathways activated by extracellular factors and oncogenes. Of particular interest is the messenger RNA 5' cap-binding protein, eIF-4E. Overexpression of eIF-4E in fibroblasts results in malignant transformation, suggesting that it is an important transducer of growth signals, and that aberrant expression of a translation factor can cause malignancy. Elucidation of the components of the signalling pathways which regulate initiation factor activity should increase our understanding of how extracellular factors and oncogenes effect cellular proliferation, and the role that translation plays in this process.  相似文献   

16.
The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.  相似文献   

17.
Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with 32P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or "unwind" mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. Our results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.  相似文献   

18.
The translation initiation factor 4E (eIF-4E) is involved in the recognition of the cap structure at the 5' end of eukaryotic mRNA and facilitates ribosome binding. Subsequently, additional initiation factors mediate ribosomal scanning of mRNA and initiator AUG recognition (Shatkin, A. J. (1985) Cell 40, 223-224; Rhoads, R. E. (1988) Trends Biochem. Sci. 13, 52-56; Edery, I., Pelletier, J., and Sonenberg, N. (1987) in Translational Regulation of Gene Expression (Ilan, J., ed) pp. 335-366, Plenum Publishing Corp., New York). We show here that initiation factor 4E is functionally conserved between the unicellular eukaryote Saccharomyces cerevisiae and mammals. Although the amino acid identity of the factors from both species is limited to only 33%, mouse eIF-4E can substitute for yeast eIF-4E in vivo without major effects on cell viability, growth, and mating. This finding provides a starting point for new experimental strategies to investigate the structure-function relationship of eukaryotic translation initiation factor eIF-4E.  相似文献   

19.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, was isolated by m7 GTP-Sepharose affinity chromatography from rabbit reticulocytes incubated with [32P]orthophosphate. Following treatment of reticulocytes with phorbol 12-myristate 13-acetate (PMA) for 30 min, stimulation of phosphorylation of both the p25 and p220 subunits was observed (2.5-5-fold). Two variants were observed for p25 in the absence and presence of PMA when analyzed by two-dimensional gel electrophoresis. Only the more acidic of these was phosphorylated, with the level of phosphorylation increased upon PMA treatment. One main variant was observed for p220; following PMA stimulation, in addition to increased labeling of this variant, two more acidic phosphorylated variants were observed. Low levels of eIF-3 and -4B were associated with purified eIF-4F, and PMA treatment stimulated phosphorylation of eIF-3 (p170) by 2-4-fold and eIF-4B by 1.5-2.5 fold. Two-dimensional phosphopeptide mapping of p25 phosphorylated in the absence or presence of PMA generated a single tryptic phosphopeptide, suggesting a single phosphorylation site. A more complex phosphopeptide map was observed with p220 subunit. The maps for both subunits contained the same phosphopeptides as those obtained when eIF-4F was phosphorylated in vitro by the Ca2+/phospholipid-dependent protein kinase, indicating this protein kinase directly modulated eIF-4F in response to PMA.  相似文献   

20.
The binding of the 5'-terminal cap analogues m7GpppG and m7GTP to wheat germ protein synthesis initiation factors eIF-4F and eIF-(iso)4F as a function of pH, ionic strength, and temperature is described. Equilibrium binding data indicate that eIF-4F and eIF-(iso)4F have different mechanisms for interacting with the 5'-cap structure, but the complexes formed between m7GpppG and wheat germ factor eIF-(iso)4F more closely resemble complexes formed between this cap analogue and either mammalian eIF-4E or eIF-4F. The binding of these initiation factors to the hypermethylated cap analogues m2,7GMP, m2,7GpppG, and m2,2,7GpppG is also investigated. The differences in affinity of eIF-4F and eIF-(iso)4F for the hypermethylated 5'-terminal cap structures suggest that these factors may have discriminatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号