首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invading bacteria such as Staphylococcus aureus induce mobilization of professional phagocytes (e.g., neutrophils) and extracellular antibacterial proteins (e.g., group IIA phospholipase A2 (gIIA PLA2)). Accumulation of gIIA PLA2 in inflammatory fluids confers potent extracellular antistaphylococcal activity and at lower concentrations promotes bacterial phospholipid degradation during phagocytosis of S. aureus by human neutrophils. D-alanylation of (lipo) teichoic acids of S. aureus increases bacterial resistance to gIIA PLA2 approximately 100-fold, raising the possibility that the resistance of ingested S. aureus to related gV and gX secretory PLA2 present in human neutrophil granules depends on D-alanylation mediated by the dlt operon. However, we show that isogenic wild-type and dltA S. aureus are equally resistant to gV/X PLA2 during phagocytosis and when exposed to the purified enzymes. The fates of wild-type and dltA S. aureus exposed to serum and human neutrophils differed significantly only when extracellular gIIA PLA2 was also present before phagocytosis. The extreme potency of the gIIA PLA2 toward dltA S. aureus suggests that even small amounts of this extracellular enzyme mobilized early in inflammation could contribute substantially to the overall cytotoxicity of acute inflammatory exudates toward S. aureus when D-alanylation of (lipo)teichoic acids is limiting.  相似文献   

2.
The antibacterial properties of human group IIA secreted phospholipase A(2) against Gram-positive bacteria as a result of membrane hydrolysis have been reported. Using Micrococcus luteus as a model system, we demonstrate the very high specificity of this human enzyme for such hydrolysis compared with the group IB, IIE, IIF, V, and X human secreted phospholipase A(2)s. A unique feature of the group IIA enzyme is its very high pI due to a large excess of cationic residues on the enzyme surface. The importance of this global positive charge in bacterial cell membrane hydrolysis and bacterial killing has been examined using charge reversal mutagenesis. The global positive charge on the enzyme surface allows penetration through the bacterial cell wall, thus allowing access of this enzyme to the cell membrane. Reduced bacterial killing was associated with the loss of positive charge and reduced cell membrane hydrolysis. All mutants were highly effective in hydrolyzing the bacterial membrane of cells in which the cell wall was permeabilized with lysozyme. These same overall characteristics were also seen with suspensions of Staphylococcus aureus and Listeria innocua, where cell membrane hydrolysis and antibacterial activity of human group IIA enzyme was also lost as a result of charge reversal mutagenesis.  相似文献   

3.
4.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

5.
Bactericidal properties of group IIA and group V phospholipases A2   总被引:1,自引:0,他引:1  
Group V phospholipase A(2) (PLA(2)) is a recently characterized 14-kDa secretory PLA(2) of mammalian heart and macrophage-derived cells. Group IIA PLA(2), which is structurally close to group V PLA(2), has been shown to kill Gram-positive bacteria in vitro and to prevent symptoms of Gram-positive infection in vivo. We studied the antibacterial properties of fully active recombinant rat group IIA and V PLA(2)s. Both group IIA and V PLA(2)s were highly bactericidal against Gram-positive bacteria, including methicillin-resistant staphylococci and vancomycin-resistant enterococci. Only high concentrations of group IIA PLA(2) showed some bactericidal effect against the Gram-negative bacterium Escherichia coli. Our results confirm that group IIA PLA(2) is a potent antibacterial enzyme against Gram-positive bacteria. Moreover, we show here that group V PLA(2) is a novel antibacterial mammalian protein, but is less potent than group IIA PLA(2). Both enzymes may be considered as future therapeutic agents against bacterial infections.  相似文献   

6.
Bacillus subtilis contains seven extracytoplasmic-function sigma factors that activate partially overlapping regulons. We here identify four additional members of the sigma(X) regulon, pbpX (penicillin-binding protein), ywnJ, the dlt operon (D-alanylation of teichoic acids), and the pss ybfM psd operon (phosphatidylethanolamine biosynthesis). Modification of teichoic acids by esterification with D-alanine and incorporation of phosphatidylethanolamine into the cell membrane have a common consequence: in both cases positively charged amino groups are introduced into the cell envelope. The resulting reduction in the net negative charge of the cell envelope has been previously implicated as a resistance mechanism specific for cationic antimicrobial peptides. Consistent with this notion, we find that both sigX and dltA mutants are more sensitive to nisin than wild-type cells. We conclude that activation of the sigma(X) regulon serves to alter cell surface properties to provide protection against antimicrobial peptides.  相似文献   

7.
Antibacterial properties of secreted phospholipases A2 (PLA2) have emerged gradually. Group (G) IIA PLA2 is the most potent among mammalian secreted (s) PLA2s against Gram-positive bacteria, but additional antibacterial compounds, e.g. the bactericidal/permeability-increasing protein, are needed to kill Gram-negative bacteria. The mechanisms of binding to the bacterial surface and the killing of bacteria by sPLA2s are based on the positive charge of the PLA2 protein and its phospholipolytic enzymatic activity, respectively. The concentration of GIIA PLA2 is highly elevated in serum of patients with bacterial sepsis, and overexpression of GIIA PLA(2) protects transgenic mice against experimental Gram-positive infection. The synthesis and secretion of GIIA PLA2 are stimulated by the cytokines TNF-alpha, IL-1 and IL-6. Secreted PLA2s may be potentially useful new endogenous antibiotics to combat infections including those caused by antibiotic-resistant bacteria such as methicillin-resistant staphylococci and vancomysin-resistant enterococci.  相似文献   

8.
Modification of the membrane lipid phosphatidylglycerol (PG) of Staphylococcus aureus by enzymatic transfer of a l-lysine residue leading to lysyl-PG converts the net charge of PG from -1 to +1 and is thought to confer resistance to cationic antimicrobial peptides (AMPs). Lysyl-PG synthesis and translocation to the outer leaflet of the bacterial membrane are achieved by the membrane protein MprF. Consequently, mutants lacking a functional mprF gene are in particular vulnerable to the action of AMPs. Hence, we aim at elucidating whether and to which extent lysyl-PG modulates membrane binding, insertion, and permeabilization by various AMPs. Lysyl-PG was incorporated into artificial lipid bilayers, mimicking the cytoplasmic membrane of S. aureus. Moreover, we determined the activity of the peptides against a clinical isolate of S. aureus strain SA113 and two mutants lacking a functional mprF gene and visualized peptide-induced ultrastructural changes of bacteria by transmission electron microscopy. The studied peptides were: (i) NK-2, an α-helical fragment of mammalian NK-lysin, (ii) arenicin-1, a lugworm β-sheet peptide, and (iii) bee venom melittin. Biophysical data obtained by FRET spectroscopy, Fourier transform infrared spectroscopy, and electrical measurements with planar lipid bilayers were correlated with the biological activities of the peptides. They strongly support the hypothesis that peptide-membrane interactions are a prerequisite for eradication of S. aureus. However, degree and mode of modulation of membrane properties such as fluidity, capacitance, and conductivity were unique for each of the peptides. Altogether, our data support and underline the significance of lysyl-PG for S. aureus resistance to AMPs.  相似文献   

9.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

10.
Positively charged antimicrobial peptides with membrane-damaging activity are produced by animals and humans as components of their innate immunity against bacterial infections and also by many bacteria to inhibit competing microorganisms. Staphylococcus aureus and Staphylococcus xylosus, which tolerate high concentrations of several antimicrobial peptides, were mutagenized to identify genes responsible for this insensitivity. Several mutants with increased sensitivity were obtained, which exhibited an altered structure of teichoic acids, major components of the Gram-positive cell wall. The mutant teichoic acids lacked D-alanine, as a result of which the cells carried an increased negative surface charge. The mutant cells bound fewer anionic, but more positively charged proteins. They were sensitive to human defensin HNP1-3, animal-derived protegrins, tachyplesins, and magainin II, and to the bacteria-derived peptides gallidermin and nisin. The mutated genes shared sequence similarity with the dlt genes involved in the transfer of D-alanine into teichoic acids from other Gram-positive bacteria. Wild-type strains bearing additional copies of the dlt operon produced teichoic acids with higher amounts of D-alanine esters, bound cationic proteins less effectively and were less sensitive to antimicrobial peptides. We propose a role of the D-alanine-esterified teichoic acids which occur in many pathogenic bacteria in the protection against human and animal defense systems.  相似文献   

11.
Fine-tuning of the biophysical properties of biological membranes is essential for adaptation of cells to changing environments. For instance, to lower the negative charge of the lipid bilayer, certain bacteria add lysine to phosphatidylglycerol (PG) converting the net negative charge of PG (−1) to a net positive charge in Lys-PG (+1). Reducing the net negative charge of the bacterial cell wall is a common strategy used by bacteria to resist cationic antimicrobial peptides (CAMPs) secreted by other microbes or produced by the innate immune system of a host organism. The article by Klein et al . in the current issue of Molecular Microbiology reports a new modification of the bacterial membrane, addition of alanine to PG, in Pseudomonas aeruginosa . In spite of the neutral charge of Ala-PG, this modified lipid was found to be linked to several resistance phenotypes in P. aeruginosa . For instance, Ala-PG increases resistance to two positively charged antibacterial agents, a β-lactam and high concentrations of lactate. These findings shed light on the mechanisms by which bacteria fine-tune the properties of their cell membranes by adding various amino acids on the polar head group of phospholipids.  相似文献   

12.
Streptococcus pneumoniae is one of the few species within the group of low-G +C gram-positive bacteria reported to contain no d-alanine in teichoic acids, although the dltABCD operon encoding proteins responsible for d-alanylation is present in the genomes of two S. pneumoniae strains, the laboratory strain R6 and the clinical isolate TIGR4. The annotation of dltA in R6 predicts a protein, d-alanine-d-alanyl carrier protein ligase (Dcl), that is shorter at the amino terminus than all other Dcl proteins. Translation of dltA could also start upstream of the annotated TTG start codon at a GTG, resulting in the premature termination of dltA translation at a stop codon. Applying a novel integrative translation probe plasmid with Escherichia coli 'lacZ as a reporter, we could demonstrate that dltA translation starts at the upstream GTG. Consequently, S. pneumoniae R6 is a dltA mutant, whereas S. pneumoniae D39, the parental strain of R6, and Rx, another derivative of D39, contained intact dltA genes. Repair of the stop codon in dltA of R6 and insertional inactivation of dltA in D39 and Rx yielded pairs of dltA-deficient and dltA-proficient strains. Subsequent phenotypic analysis showed that dltA inactivation resulted in enhanced sensitivity to the cationic antimicrobial peptides nisin and gallidermin, a phenotype fully consistent with those of dltA mutants of other gram-positive bacteria. In addition, mild alkaline hydrolysis of heat-inactivated whole cells released d-alanine from dltA-proficient strains, but not from dltA mutants. The results of our study suggest that, as in many other low-G+C gram-positive bacteria, teichoic acids of S. pneumoniae contain d-alanine residues in order to protect this human pathogen against the actions of cationic antimicrobial peptides.  相似文献   

13.
DnaA protein activity, the initiator of chromosomal DNA replication in bacteria, is regulated by acidic phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) via facilitation of the exchange reaction of bound adenine nucleotide. Total lipid isolated from exponentially growing Staphylococcus aureus cells facilitated the release of ATP bound to S. aureus DnaA protein, whereas that from stationary phase cells was inert. Fractionation of total lipid from stationary phase cells revealed that the basic phospholipid, lysylphosphatidylglycerol (LPG), inhibited PG- or CL-facilitated release of ATP from DnaA protein. There was an increase in LPG concentration during the stationary phase. A fraction of the total lipid from stationary phase cells of an integrational deletion mprF mutant, in which LPG was lost, facilitated the release of ATP from DnaA protein. A zwitterionic phospholipid, phosphatidylethanolamine, also inhibited PG-facilitated ATP release. These results indicate that interaction of DnaA protein with acidic phospholipids might be regulated by changes in the phospholipid composition of the cell membrane at different growth stages. In addition, the mprF mutant exhibited an increased amount of origin per cell in vivo, suggesting that LPG is involved in regulating the cell cycle event(s).  相似文献   

14.
Empedopeptin is a natural lipodepsipeptide antibiotic with potent antibacterial activity against multiresistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae in vitro and in animal models of bacterial infection. Here, we describe its so far elusive mechanism of antibacterial action. Empedopeptin selectively interferes with late stages of cell wall biosynthesis in intact bacterial cells as demonstrated by inhibition of N-acetylglucosamine incorporation into polymeric cell wall and the accumulation of the ultimate soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide in the cytoplasm. Using membrane preparations and the complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes and their respective purified substrates, we show that empedopeptin forms complexes with undecaprenyl pyrophosphate containing peptidoglycan precursors. The primary physiological target of empedopeptin is undecaprenyl pyrophosphate-N-acetylmuramic acid(pentapeptide)-N-acetylglucosamine (lipid II), which is readily accessible at the outside of the cell and which forms a complex with the antibiotic in a 1:2 molar stoichiometry. Lipid II is bound in a region that involves at least the pyrophosphate group, the first sugar, and the proximal parts of stem peptide and undecaprenyl chain. Undecaprenyl pyrophosphate and also teichoic acid precursors are bound with lower affinity and constitute additional targets. Calcium ions are crucial for the antibacterial activity of empedopeptin as they promote stronger interaction with its targets and with negatively charged phospholipids in the membrane. Based on the high structural similarity of empedopeptin to the tripropeptins and plusbacins, we propose this mechanism of action for the whole compound class.  相似文献   

15.
Group II phospholipase A2 (PLA2) is an enzyme that has marked antibacterial properties in vitro. To define the role of group II PLA2 in the defense against Staphylococcus aureus, we studied host responses in transgenic mice expressing human group II PLA2 and group II PLA2-deficient C57BL/6J mice in experimental S. aureus infection. After the administration of S. aureus, the transgenic mice showed increased expression of group II PLA2 mRNA in the liver and increased concentration of group II PLA2 in serum, whereas the PLA2-deficient mice completely lacked the PLA2 response. Expression of human group II PLA2 resulted in reduced mortality and improved the resistance of the mice by killing the bacteria as indicated by low numbers of live bacteria in their tissues. Human group II PLA2 was responsible for the bactericidal activity of transgenic mouse serum. These results suggest a possible role for group II PLA2 in the innate immunity against S. aureus infection.  相似文献   

16.
AIMS: To examine whether inactivation of the dlt operon and increased charge density of the wall enhances secretion of heterologous proteins in industrial strains of Bacillus licheniformis. METHODS AND RESULTS: The dltA gene of B. licheniformis was cloned, sequenced and mutated by inserting a chloramphenicol acetyl transferase (cat) gene cassette. The mutation facilitated growth in the late exponential growth phase, increased endogenous autolysis and decreased resistance to a cationic peptide, polylysine. It was observed that dltA mutation increased the production of cyclodextrin glycosyltransferase (CGTase) by 1.5- to sevenfold depending on the growth phase, but decreased the production of penicillinase by twofold. CONCLUSIONS AND SIGNIFICANCE: The results suggest that the d-alanylation of teichoic acids is an element that can be used to improve the production of some secretory proteins in industrial applications based on this important industrial microorganism.  相似文献   

17.
S ummary . The isolation of an antibacterial α-globulin from the sera of humans as well as selected animal species has been reported. While antibacterial agent (ABA) reduced the respiration of intact cells by 55%, the anti-respiratory effect was increased to 67% and 85% for spheroplasts and L-forms, respectively. Studies indicated that neither cell wall nor peptidoglycan could absorb ABA quickly enough to inhibit its membrane damaging effects. Although the ribitol teichoic acid-free mutant Staphylococcus aureus H52A5 was not susceptible to ABA, the lack of ribitol teichoic acid may have altered structurally the cell wall so that ABA access to the cell membrane was precluded. The activity of ABA was neutralized by prior exposure of staphylococci to exogenous coagulase, presumably by masking unknown receptor sites for ABA on the cell surface. In our studies with cell wall deficient organisms, we could not demonstrate coagulase reversal of ABA activity.  相似文献   

18.
Daptomycin (DAP) is a cyclic lipopeptide antibiotic used for the treatment of certain Staphylococcus aureus infections. Although rare, strains have been isolated that are DAP resistant. These strains usually have mutations in mprF, a gene encoding a membrane protein with both lysylphosphatidylglycerol (LPG) synthase and flippase activities. Because ΔmprF strains have increased DAP susceptibility, the mechanism of resistance is not likely due to a loss of mprF function. In this study, we developed an LC-MS assay to examine the effect of different mprF mutations on the ratio of phosphatidylglycerol (PG) to LPG in the membrane. Our assay demonstrated that some, but not all, mutations in the flippase and synthase domains result in small but reproducible increases in the proportion of LPG relative to PG. Techniques described herein represent a higher throughput and more sensitive method for measuring relative phospholipids levels. These results offer guidance in the understanding of how mprF confers DAP resistance; namely, mprF-mediated resistance may be through more than one mechanism, including increased overall LPG synthesis and increased LPG present on the outer leaflet of the cytoplasmic membrane.  相似文献   

19.
家蝇幼虫抗菌肽MDL-2对细菌细胞渗透性及代谢功能影响   总被引:2,自引:0,他引:2  
研究了家蝇幼虫抗菌肽MDL-2与细菌相互作用时,抗菌肤MDL-2对细菌细胞壁的溶解作用、细胞膜渗透性和代谢的影响.抗菌肽MDL-2在抗菌过程中首先与细菌的细胞壁相互作用,使其破裂,抗菌肽对革兰氏阴性细菌大肠杆菌细胞壁的作用有浓度依赖性,而对革兰氏阳性细菌金黄色葡萄球菌MDL-2在较低的浓度时即可发生细胞壁破坏作用;抗菌...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号