首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Aspergillus niger NRRL-3, an organism used for the industrial scale production of d-gluconic acid and glucose oxidase (EC 1.1.3.4), was subjected to mutagenesis and selection for acid production on diagnostic media containing methyl red. The plates contained 0.1 M d-glucose, a concentration that does not produce a color change in the medium surrounding mycelia of the parental strain under the conditions employed. Mutagenized spores yielded occasional colonies which were able to grow rapidly and were surrounded by a reddish zone. A number of such presumptive mutants were selected and isolated. Twenty-six such strains were grown in shaken cultures with liquid media containing 0.01, 0.1 or 0.5 M d-glucose, harvested, disrupted and the specific activity of d-glucose oxidase determined. Seven of the mutant strains had glucose oxidase specific activities markedly higher than the parental strain.Paper No. 8393, Nebraska Agricultural Research Division.  相似文献   

2.
 The production of extracellular catalase in a submerged culture by a number of biochemical mutants has been evaluated. Eight of these mutants showed increased extracellular catalase, the level of which ranged widely in individual cases from 44% to over 94% in comparison with the parental strain. Studies of the relationship between a criterion of selection and the frequency of mutation showed that the highest frequency of positive mutations (15.8% and 24.2%) was obtained with respect to mutants resistant to ethidium bromide (1 mmol/l) and sodium gluconate (45%) respectively. The time course of growth and enzyme production by the most active mutant, AM-20, showed extra- and intracellular catalase activities increasing about 2- and 2.6-fold respectively, compared with the parental strain. Received: 4 September 1996 / Received revision: 29 October 1996 / Accepted: 2 November 1996  相似文献   

3.
The production of the enzyme glucose oxidase by Aspergillus niger is well documented. However, its distribution within the fungal culture is less well defined. Since the enzyme location impacts significantly on enzyme recovery, this study quantifies the enzyme distribution between the extracellular fluid, cell wall, cytoplasm and slime mucilage fractions in an A. niger NRRL-3. The culture was separated into the individual fractions and the glucose oxidase activity was determined in each. The extracellular fluid contained 38% of the total activity. The remaining 62% was associated with the mycelia and was distributed between the cell wall, cytoplasm and slime mucilage in the proportions of 34, 12 and 16%, respectively. Intracellular cytoplasmic and cell wall sites were confirmed using immunocytochemical labelling of the mycelia. In the non-viable cell, the mycelial-associated enzyme was distributed between these sites, whereas in the viable cell, it was predominantly associated with the cell wall. The distribution of the enzyme activity indicates that recovery from the solids would result in a 38% loss, whereas recovery from the extracellular fluid would result in a 62% loss. The results also suggest, however, that this 62% loss could be reduced to around 34% by disintegrating the solids prior to separation due to the contribution of the enzyme in the cytoplasm and slime mucilage. This was confirmed by independently establishing the percentage activity in the liquid and solid portions of a disintegrated culture as 62 and 38%, respectively.  相似文献   

4.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

5.
Combined with u.v. irradiation and the nitrosoguanidine method, selection of biochemical mutants resistant to metabolic inhibitors (2-deoxy-D-glucose, antimycin A, sodium orthovanadate and sodium azide) was a very efficient method for improvement of ribonuclease production by Aspergillus niger. Resistance to sodium azide produced highest RNase production, greatest frequency of positive mutation and shortest sporulation time. The most active strain, Aspergillus niger SA-13-20 resistant to sodium azide, was obtained, which had a 433% increase in RNase production in comparison with the parent strain and had good subculturing stability. Its dynamic characters were similar to those of the parent strain.  相似文献   

6.
7.
After the mutagenesis ofPenicillium funiculosum with UV light andN-nitroso-N-methylurea, 83 of 2237 grown colonies were surrounded with increased zones of glucose oxidase diffusion. Analysis of the glucose oxidase activity of selected mutant strains grown in submerged cultures allowed 18 mutant strains to be obtained whose glucose oxidase activity was 5–153% higher (in a medium with glucose) and 4–83% higher (in a medium with sucrose) than that of the parent strain. Two of these mutant strains, UV6.31 and NMU95-132, possessed high glucose oxidase activity when grown in media with glucose or sucrose and produced large amounts of mycelia. The active and morphologically stable mutantP. funiculosum NMU95-132 was chosen for further selection work.  相似文献   

8.
Interaction of halide ions with Aspergillus niger glucose oxidase   总被引:1,自引:0,他引:1  
M J Rogers  K G Brandt 《Biochemistry》1971,10(25):4630-4635
  相似文献   

9.
Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpd A promoter of A. nidulans. For more efficient secretion the -amylase signal peptide from A oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 g l–1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures.  相似文献   

10.
Action mechanism of glucose oxidase of Aspergillus niger   总被引:1,自引:0,他引:1  
  相似文献   

11.
Subunit structure of glucose oxidase from Aspergillus niger   总被引:2,自引:0,他引:2  
J J O'Malley  J L Weaver 《Biochemistry》1972,11(19):3527-3532
  相似文献   

12.
Summary An agar plate isolation technique was developed for screening the mutants of Aspergillus niger. Fungal growth in solid media containing carboxymethylcellulose(CMC) was selected within 2–3 days. The mutants selected by the new technique showed a remarkable enhancement of CMCase, FPase, -glucosidase, xylanase, and -xylosidase activities. These results clearly show that the new isolation technique is a practical method for the selection of better strains.  相似文献   

13.
The kinetics of glucose oxidase (GOD) excretion by recombinant Aspergillus niger NRRL-3 (GOD3-18) were investigated using enzymatic activity measurements as well as gel electrophoresis techniques. The majority of GOD was produced during rapid growth in the first phase of the cultivation. The high excretion rate during this phase did not prevent the endocellular accumulation of GOD up to 40% of the total soluble cell protein demonstrating that the production rate exceeded the excretion rate of the enzyme into the culture medium. During the second phase of the cultivation, excretion of GOD occurred at a slower rate, although the majority of GOD produced during the first phase was excreted during the second phase of the cultivation. At the end, about 90% of the total GOD produced was recovered from the culture medium. Two-dimensional gel electrophoresis provided evidence that endo- and exocellular GOD were indistinguishable, revealing identical posttranslational modifications (e.g., signal sequence cleavage, glycosylation pattern). The results demonstrate that the initial steps of the secretory pathway are fast and that the excretion of the enzyme into the culture fluid was most likely delayed due to retention by the cell wall. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Summary This report describes the expression of cloned glucose oxidase gene (god) in glucose-oxidase-deficient mutants (God) of Aspergillus niger NRRL-3, the use of this gene for the elevation of glucose oxidase (GOD) productivity in the parental strain, and the further improvement of GOD production by subjecting the transformants to nitrous acid mutagenesis.Correspondence to: F. A. Sharif  相似文献   

15.
16.
A number of novel redox surfactants (based on mixed bipyridine/dipyridylamine complexes of osmium (II) where the dipyridylamine ligands bears a saturated C(8), C(10), C(12), C(14), or C(16) alkyl chain) were synthesized and characterized electrochemically and biochemically as mediators for glucose oxidase (EC 1.1.3.4, GOD) of Aspergillus niger. These compounds exhibited critical micelle concentrations (CMCs) in phosphate-buffered saline solution (pH 7.4) in the range 10(-4) 10 10(-3) M, the value decreasing with increasing chain length. Dependence of a number of properties (speed of mediation, redox potential, denaturing action on the enzyme, adsorption on an electrode surface) on the length of the mediator alkyl chain was observed. The presence of an alkyl chain decreased the rate of mediation relative to otherwise similar nonsurfactant mediators, and the longer alkyl chain, the slower the rate of mediation. For each compound, mediation above the CMC was about tenfold slower than that observed below the CMC. However, for the cases of mediator absorbed on an electrode surface with GOD, longer chains give increased physisorption of mixed micelles of enzyme and mediator. The compounds were incidentally found to inhibit the glucose oxidase activity of GOD in a complex manner; inhibition increased with increasing chain length and the deactivation, for any given compound, was more pronounced below the CMC than above. Glucose oxidase activity assays and study of the action of surfactants and mediators on the fluorescent properties of carboxy-fluorescein-labeled GOD led to the consideration of a model for redox surfactant-GOD interaction where three mechanisms may operate: first, a selective interaction of mediators with the GOD active site; second, a nondenaturing association of short-chain (相似文献   

17.
Summary The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both enzymes were located in microbodies. In addition, when the organism was grown on glucose with methylamine as a nitrogen source, amine oxidase activity was detected in the microbodies. These organelles can therefore be designated as peroxisomes.  相似文献   

18.
The effects of various metal ions on the simultaneous production of glucose oxidase and catalase by Aspergillus niger were investigated. Calcium carbonate induced synthesis of both enzymes. The induction of calcium carbonate was accompanied by a metabolic shift from the glycolytic pathway (EMP, Embden-Meyerhof-Parnas) to direct oxidation of glucose by glucose oxidase. The time course of the biosynthesis of both enzymes is reported. The logistic model was in good agreement with the experimental growth results. The production of both enzymes was growth-associated. Finally, a model of growth and product formation was also proposed.  相似文献   

19.
20.
The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号