首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immune response patterns of inbred and congenic strains of mice against terpolymers poly(glu57lys38ala5) and poly(glu54lys36ala10) have been studied. Initial recognition of the polymers is ascribed to ‘GA’ receptors (Ir-GA gene product) on T cells of mice ofH-2 haplotypes,a,b,f,k ands, and ‘GL’ receptors (Ir-GL gene product) of mice ofH-2 p,H-2 q andH-2 j haplotypes, and to GA and/or GL receptors of mice ofH- 2d andH- 2r haplotypes. The specificity of the antibody is directed predominantly against GL. The inability to elicit antibody with GA specificity has been ascribed to the lack of significant concentrations of GA sequences in the polymers to interact with appropriate receptors on B cells. The weakest responders were mice of H-2b haplotype. F1 hybrids (responders×nonresponders) were all responders demonstrating the dominant character of responsiveness. Wide variations in antibody levels produced among strains of mice of theH-2 k andH-2 b haplotypes are ascribed to genes not linked toH-2.  相似文献   

2.
UV-irradiated Chinese hamster cells on post-irradiation treatment with caffeine in growth medium for 24 h gave rise to biphasic UV-survival curves. At caffeine concentrations between 0.001 and 0.1 mM, control and caffeine-grown cells had similar survival curves initially from 0 to 30 J/m2. At fluences greater than 30 J/m2, there was effectively only little further killing of caffeine-grown cells beyond that observed at 30 J/m2. At concentrations of caffeine greater than 0.5 mM, there was a gradual sensitization in the early part of the survival curve with increasing caffeine concentrations; but at fluences greater than 3 J/m2, the slopes in the survival curves decreased very much.It has been proposed that the initial sensitization observed at low UV fluences is due to the suppression of post-replication repair by caffeine. After high fluences of UV exposures in these excision-deficient cells, in the presence of caffeine, the possibility of an induced ‘SOS’-like repair process has been suggested. This suggestion was supported by the observation that caffeine increased the yield of the UV-induced 8-azaguanine-resistant mutants only for the cell population exposed to UV fluences greater than 30 J/m2.  相似文献   

3.
Although it is known that (i) O6-alkylguanine-DNA alkyltransferase (AGT) confers tumor cell resistance to guanine O6-targeting drugs such as cloretazine, carmustine, and temozolomide and that (ii) AGT levels in tumors are highly variable, measurement of AGT activity in tumors before treatment is not a routine clinical practice. This derives in part from the lack of a reliable clinical AGT assay; therefore, a simple AGT assay was devised based on transfer of radioactive benzyl residues from [benzene-3H]O6-benzylguanine ([3H]BG) to AGT. The assay involves incubation of intact cells or cell homogenates with [3H]BG and measurement of radioactivity in a 70% methanol precipitable fraction. Approximately 85% of AGT in intact cells was recovered in cell homogenates. Accuracy of the AGT assay was confirmed by examination of AGT levels by Western blot analysis with the exception of false-positive results in melanin-containing cells due to [3H]BG binding to melanin. Second-order kinetic constants for human and murine AGT were 1100 and 380 M−1 s−1, respectively. AGT levels in various human cell lines ranged from less than 500 molecules/cell (detection limit) to 45,000 molecules/cell. Rodent cell lines frequently lacked AGT expression, and AGT levels in rodent cells were much lower than in human cells.  相似文献   

4.
The DNA repair protein O6-alkylguanine alkyltransferase (AGT) is responsible for removing promutagenic alkyl lesions from exocyclic oxygens located in the major groove of DNA, i.e. the O6 and O4 positions of guanine and thymine. The protein carries out this repair reaction by transferring the alkyl group to an active site cysteine and in doing so directly repairs the premutagenic lesion in a reaction that inactivates the protein. In order to trap a covalent AGT–DNA complex, oligodeoxyribonucleotides containing the novel nucleoside N1,O6-ethanoxanthosine (eX) have been prepared. The eX nucleoside was prepared by deamination of 3′,5′-protected O6-hydroxyethyl-2′-deoxyguanosine followed by cyclization to produce 3′,5′-protected N1,O6-ethano-2′-deoxyxanthosine, which was converted to the nucleoside phosphoramidite and used in the preparation of oligodeoxyribonucleotides. Incubation of human AGT with a DNA duplex containing eX resulted in the formation of a covalent protein–DNA complex. Formation of this complex was dependent on both active human AGT and eX and could be prevented by chemical inactivation of the AGT with O6-benzylguanine. The crosslinking of AGT to DNA using eX occurs with high yield and the resulting complex appears to be well suited for further biochemical and biophysical characterization.  相似文献   

5.
The H+-coupled transporter hPepT1 (SLC15A1) mediates the transport of di/tripeptides and many orally-active drugs across the brush-border membrane of the small intestinal epithelium. Incubation of Caco-2 cell monolayers (15 min) with the dietary phosphodiesterase inhibitors caffeine and theophylline inhibited Gly-Sar uptake across the apical membrane. Pentoxifylline, a phosphodiesterase inhibitor given orally to treat intermittent claudication, also decreased Gly-Sar uptake through a reduction in capacity (Vmax) without any effect on affinity (Km). The reduction in dipeptide transport was dependent upon both extracellular Na+ and apical pH but was not observed in the presence of the selective Na+/H+ exchanger NHE3 (SLC9A3) inhibitor S1611. Measurement of intracellular pH confirmed that caffeine was not directly inhibiting hPepT1 but rather having an indirect effect through inhibition of NHE3 activity. NHE3 maintains the H+-electrochemical gradient which, in turn, acts as the driving force for H+-coupled solute transport. Uptake of β-alanine, a substrate for the H+-coupled amino acid transporter hPAT1 (SLC36A1), was also inhibited by caffeine. The regulation of NHE3 by non-nutrient components of diet or orally-delivered drugs may alter the function of any solute carrier dependent upon the H+-electrochemical gradient and may, therefore, be a site for both nutrient-drug and drug-drug interactions in the small intestine.  相似文献   

6.
The clastogenic effect ofN-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Chinese hamster ovary (CHO) cells and its modulation by Na2SeO3 and caffeine were studied by metaphase analysis of chromosome aberrations (CA) as well as by measuring the formation and repair of single-strand (ss) DNA breaks employing hydroxylapatite chromatography. Treatment of CHO cells with MNNG (1.25 or 2.5 × 10-5M) for 3 h caused CA in 11 and 19% of metaphases scored, respectively. Pretreatment of cells with Na2SeO3 (1–5 μg/mL) or caffeine (0.2–2.0 mg/mL) for 2 h resulted in a 2–3.5-fold increase of CA frequency. Addition of both modulators during the mutagen exposure tended to cause a slight inhibition of clastogenic activity of MNNG (1.25 × 10−5 M) or had no effect on CA number when MNNG was used at a concentration of 2.5 × 10−5M. Posttreatment of CHO cells with Na2SeO3 for 20 h after MNNG was ineffective in influencing the number of metaphases with CA, whereas, at these conditions, caffeine enhanced up to 6-7-fold the clastogenic activity of MNNG. Addition of both modulators during the whole experiment, 2 h pretreatment included, resulted in a further significant increase of CA frequency up to the total pulverization of chromosomes in all metaphases scored. The coclastogenic effect of caffeine was greater in this case. The enhancement of chromosome-damaging activity of MNNG by selenite and caffeine was better expressed when this carcinogen was applied at the higher concentration used. An additive coclastogenic effect was observed in CHO cells treated simultaneously with Na2SeO3 and caffeine plus MNNG. In addition, the treatment of CHO cells with MNNG (5 × 10−6 M) caused a rapid increase of ssDNA breaks number reaching maximal values after 30–45 min. However, up to 50–60% of MNNG-induced ssDNA breaks were repaired during the first 60–150 min after the mutagen exposure. The 2 h pretreatment of CHO cells with Na2SeO3 (2 μg/mL) or the addition of this trace element after MNNG had no effect on formation and repair of MNNG-induced ssDNA breaks. The coclastogenic effect of Na2SeO3 in CHO cells treated with MNNG was not directly linked to the induction and disappearance of ssDNA breaks measured by hydroxylapatite chromatography.  相似文献   

7.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   

8.
Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line ApcMin/+, mimicking the early step of colorectal carcinogenesis, and control Apc+/+ cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on ApcMin/+ cells compared to Apc+/+. Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.  相似文献   

9.
Three nitroimidazole compounds were tested for trypanocidal activity against early (3-day) T. brucei TREU 667 infections. Compound 1 (1-methyl-2-carbamoyl-oxy-methyl-5-nitroimidazole) at both 5 and 20 mg/kg given as four daily doses was ineffective, while Compound 2 (3-(1-methyl-5-nitroimidazole-2-yl)-3α, 4,5,6,7, 7α-hexahydro-1, 2-benz-isoxazole) at 4 × 80 mg/kg and Compound 3 (3-(1-methyl-5-nitroimidazole-2-yl)-4, 5-hexamethylene-Δ2-isoxazoline) at 4 × 20 mg/kg both elicited a permanent cure. When tested against late (21-day) infections of T. brucei 667 neither Compound 2 nor Compound 3 given singly, or in various combinations was effective in that parasitaemias returned rapidly in nearly all mice.When the trypanocidal drug ‘Berenil’ was administered followed by the Compound 3, the majority of the mice with a 21-day infection of T. brucei TREU 667 or T. brucei LUMP 1001 were cured permanently. When ‘Berenil’ alone was used the mice usually relapsed within a few weeks of treatment. The isolate used affected the outcome of the treatment. Higher dosages of ‘Berenil’ followed by Compound 3 were required to cure infections with T. brucei LUMP 1001 than with T. brucei TREU 667.The importance of these findings in the treatment of human sleeping sickness with central nervous system involvement is discussed.  相似文献   

10.
Substituted salicylaldehydes [C6HR1R2R3(CHO)(OH)] react with CoMe3(PMe3)3 to afford 6-coordinate (cis-dimethyl)(2-formyl-phenolato)trans-bis(trimethylphosphine)cobalt(III) compounds Co[C6HR1R2R3(CHO)(O)Me2](PMe3)2 (1: R1 = H; R2 = Me; R3 = tert-Bu; 2: R1, R2 = C6H4; R3 = H). Accordingly, substituted enolated malonic dialdehydes (CHO-CR4CR5-OH) react with CoMe3(PMe3)3 to afford 6-coordinate (cis-dimethyl)(2-formyl-enolato)trans-bis(trimethylphosphine)cobalt(III) compounds Co[(CHO-CR4CR5-O)(Me)2](PMe3)2 (3: R4, R5 = (CH2)2C6H4; 4: R4 = R5 = C6H5). In the molecular structure of 4, the cobalt atom is centred in an octahedral coordination geometry brought about by a six-membered chelate ring (O:O-ligand), cis-dimethyl and trans-trimethylphosphine groups. A reaction mechanism is suggested.  相似文献   

11.
The acetoxy-functionalized bis(imidazolyl)borate [B(ImN-Me)2(OC(O)Me)Me] (=LOAc) is synthesized by the reaction of the alkoxy precursor [B(ImN-Me)2(OPri)Me] (=LOiPr) with acetic acid. In the presence of weak Brønstead acid, migration of nickel-bound acetate anion to the boron center giving LOAc occurs. The boron-acetoxy linkage survives upon the treatment of the nickel complexes with OH, although the acetoxy group on LOAc does not coordinate to the nickel center.  相似文献   

12.
Soybean (Glycine max (L.) Merr.) cultivars have been reported to range in tolerance to injury by 4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)one (metribuzin), from tolerant (e.g.‘Bragg’) to susceptible (e.g.‘Coker 102’ and ‘Semmes’). ‘Bragg,’‘Coker 102’, and ‘Semmes’ soybeans were grown in sand subirrigated with nutrient solution containing labelled (14C-carbonyl metribuzin) and nonlabelled metribuzin to determine cultivar variability in absorption, translocation, and metabolism of metribuzin. Plants were periodically harvested, autoradiographed, and radioactivity in tissue extracts quantified. Data indicated that all 3 cultivars readily absorbed and translocated metribuzin. However, ‘Bragg’ tissues accumulated greater quantities of metribuzin metabolites than the other two cultivars. The major 14C-containing metabolite in ‘Semmes’ and ‘Coker’ roots and stems was 6-tert-butyl-as-triazine-3-5-(2H,4H)-dione, whereas the major 14C-metabolite isolated from‘Bragg’ roots and stems was a glucose conjugate. Results indicated that differential-intraspecific responses to metribuzin may result from differential capacities for herbicide detoxification by conjugation.  相似文献   

13.
EA, i.e., antigen-antibody complexes are able to induce an antigen-nonspecific suppressive factor(s) from FcR+ B cells by binding on FcR. This factor, termed “suppressive B-cell factor (SBF)” was only effective on H-2 compatible, but not on H-2 incompatible spleen cells in an adoptive cell transfer system. Furthermore, SBF, prepared from B10.A (H-2a) splenic FcR+ B cells, suppressed the adoptive primary response of B10.D2 mice (H-2d), in addition to A/J mice (H-2a) against DNP-DE, by the pretreatment of cells with SBF in vitro. Absorption with affinity columns demonstrated that active components) of SBF from C3H/He mice (H-2k) was eliminated by both B6 anti-CBA (H-2b anti-H-2k) and B10.D2 anti-B10.BR (H-2d anti-H-2k), but not B10 anti-B10.A (H-2b anti-H-2a). In contrast, the suppressive activity of SBF was eliminated neither by anti-mouse Ig nor by a heat-aggregated human γ-globulin column. These results indicate that SBF contains a product coded by the right-hand side of H-2 gene complex, but does not contain Ig determinants nor FcR. Thus, it is conceivable that a compatibility of the right-hand side of H-2 gene complex is required for inducing effective suppression of spleen cells by SBF. SBF was considered to be a trypsin-resistant and heat-labile substance with a molecular weight of 30,000–63,000. The target cells for SBF were FcR? B precursors, but not helper T cells.  相似文献   

14.
Entrainment of the nocturnal, endogenous locomotor activity rhythm of Talitrus saltator (Montagu) by the natural light-dark cycle is non-parametric, the phase of the rhythm shifting only in response to changes in the time of an experimentally simulated ‘dawn’ transition. The difference in response to light at ‘dusk’ and ‘dawn’ illustrates a phase-dependent responsiveness common to endogenous rhythms. Activity begins after complete darkness, with cessation always occurring during the ‘dawn’ transition and never continuing past the onset of total experimental illumination. The point of activity cessation is taken to be the position of a synchronizing cue controlling entrainment. The ‘dawn’ cue appears to be an absolute irradiance level of approximately 1.5 × 10?4 W/m2 (1.5 lux). The implications of such a cue are discussed in relation to field behaviour.  相似文献   

15.
16.
17.
《Plant science》1986,43(3):185-191
Glutathione synthetase (γ-l-glutamyl-l-cysteine:glycine ligase [ADP-forming], EC 6.3.2.3) was partially-purified (100-fold) from spinach (Spinacia oleracea) leaves and its properties determined. At least part of the enzyme activity is localized in chloroplasts. The properties of the enzyme suggest that GSH synthesis would be facilitated at the pH and Mg2+ concentration in the stroma of illuminated chloroplasts, but glutathione synthetase does not appear to be ‘light-activated’ in isolated type A chloroplasts.  相似文献   

18.
Oxygen consumption by Thais varied seasonally with higher values in summer than in winter. This seasonal difference was due in part to the effects of temperature and in part to those of feeding. During feeding, rates of oxygen consumption were high, but declined in the period between meals. There was little evidence of acclimation of oxygen consumption to changes in temperature; low (winter) rates of consumption were more sensitive to increases in temperature than were high (summer) rates. A polynomial expression, including terms for temperature and ‘time since last meal’, was derived for the constant a′ in the allometric equation relating oxygen consumption (o2) to dry body weight: o2 = a′.W0.511.  相似文献   

19.
The effect of caffeine (0.25–1.5 mM) on UV-irradiated (5 and 10 J/m2) primary cultures of mouse epidermal cells (EPD) and an in vitro transformed cell line (PDV) was studied at the cellular and molecular levels. A synergistic reduction in cell survival induced by caffeine with UV-irradiation was found in the PDV cells at 10 J/m2 but not at 5 J/m2. When conversion of low molecular weight newly-synthesized DNA to high molecular weight DNA was studied in both cell types, caffeine at 1.5 mM had no effect on this conversion in unirradiated cultures. At 5 J/m2, caffeine had a transitory inhibitory effect on this conversion. However, at 10 J/m2 caffeine had a strong permanent inhibitory effect on this conversion at doses higher than 0.5 mM in PDV cells and higher than 0.25 mM in EPD cells. This apparent inhibition of elongation by caffeine in irradiated cells could not be accounted for by an effect on the rate of DNA synthesis. In PDV cells there was a direct correlation in terms of effective caffeine dose level between synergistic reduction in cell survival after UV and the effect on DNA elongation. Irradiated EPD cells were more sensitive to the inhibitory effect of caffeine on DNA elongation.  相似文献   

20.
Successful application of microorganisms to heavy metal remediation depends on their resistance to toxic metals. This study contrasted the differences of tolerant mechanisms between Pb2+ and Cd2+ in Enterobacter sp. Microbial respiration and production of formic acid showed that Enterobacter sp. had a higher tolerant concentration of Pb (>1000 mg l−1) than Cd (about 200 mg l−1). Additionally, SEM confirmed that most of Pb and Cd nanoparticles (NPs) were adsorbed onto cell membrane. The Cd stress, even at low concentration (50 mg l−1), significantly enlarged the sizes of cells. The cellular size raised from 0.4 × 1.0 to 0.9 × 1.6 μm on average, inducing a platelet-like shape. In contrast, Pb cations did not stimulate such enlargement even up to 1000 mg l−1. Moreover, Cd NPs were adsorbed homogeneously by almost all the bacterial cells under TEM. However, only a few cells work as ‘hot spots’ on the sorption of Pb NPs. The heterogeneous sorption might result from a ‘self-sacrifice’ mechanism, i.e., some cells at a special life stage contributed mostly to Pb sorption. This mechanism, together with the lower mobility of Pb cations, caused higher microbial tolerance and removal efficiency towards Pb2+. This study sheds evident contrasts of bacterial resistance to the two most common heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号