首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron–electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k ?1, which was 0.037 ± 0.005 min?1 derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein–protein and protein-DNA complex studies.  相似文献   

2.
Cytotoxic effects of menadione on normal and cytochrome c-deficient yeast cells were examined on the basis of the cell growth rate, NAD(P)H concentration, reactive oxygen production, plasma membrane H+-ATPase activity, and ethanol production. In aerobically or anaerobically cultured yeast cells, NAD(P)H concentration decreased with increasing concentration of menadione, and the recovery of NAD(P)H concentration was proportional to the cell growth rate. However, there was no relationship among the inhibition of the cell growth and reactive oxygen production, plasma membrane H+-ATPase activity, and ethanol production. Among them, ethanol production showed resistance to the cytotoxicity of menadione, suggesting the resistance of glycolysis to menadione. The growth inhibitory effect of menadione depended on the rapid decrease and the recovery of NAD(P)H rather than production of reactive oxygen species regardless of aerobic culture or anaerobic culture and presence or absence of mitochondrial function. The recovery of NAD(P)H concentration after the addition of menadione might depend on menadione-resistant glycolytic enzymes.  相似文献   

3.
The technique of flash photolysis was used to study cellular variations in the number of photoreactivating enzyme (PRE) molecules during the cell division cycle of the UV-sensitive E. coli strain BS?1. No variations in the number of PRE molecules per genome were observed throughout the cell division cycle when synchronized cells cultured in either glucose-minimal or succinate-minimal medium were used. This is interpreted to mean that PRE synthesis is continuous throughout the cell cycle for glucose-grown cells, but may stop at the time chromosome replication ceases prior to division, in succinate-grown cells. The effect of growth rate and stage of growth on cellular PRE content in asynchronous cultures was also determined. Variations in the number of PRE per genome were observed for both synchronous and asynchronous cells cultured in different media and occurred in a manner that suggested a dependence on growth rate. PRE per genome increased with generation time. Stationary phase cells from each culture medium (nutrient broth, glucose-minimal, succinate-minimal) had more PRE per genome than did respective log phase cells. It is suggested that PRE synthesis may be controlled by some aspect of chromosome replication.  相似文献   

4.
Fructose-2,6-bisphosphate concentration and fructose-6-phosphate,2-kinase activity were measured in yeast cells grown aerobically or anaerobically using glucose as a carbon source. A new improved analytical method using HPLC was employed to measure fructose-2,6-P2 concentration. Anaerobically-grown yeast cells contain approximately 4-fold higher levels of fructose-2,6-P2 as compared to aerobically-grown cells in the growth phase of culture. Similarly, fructose-6-P,2-kinase activity is approximately 7-fold higher in the anaerobically-grown cells. These results suggest that the presence of oxygen in the growth medium decreases the content of fructose-2,6-P2 through inactivation of fructose-6-P,2-kinase.  相似文献   

5.
(1) The kinetic parameters of rat pancreatic adenylate cyclase were evaluated, using GTP, p[NH]ppG or GTPγS as nucleotide activator, cholecystokinin as peptide hormone, and GDPβS and dibutyryl cyclic GMP as inhibitors of guanosine triphosphate and CCK-8, respectively. The time courses of activation and the degree of activation at steady state (EA/ETOT) were compatible with a simple two-state model of activation-deactivation based on a pseudo-monomolecular activation process (rate constant k+2, and a deactivation process (rate constant koff) that included, depending on the activating nucleotide, the hydrolysis of GTP (rate constant k2) and/or the dissociation of the intact nucleotide (rate constant k?1), so that EA/ETOT = k+1/(k+1 + k2 + k?a). (2) The hormone CCK-8 increased the value of k+1 with GTP dose-dependently, from 0.2 to 10.9 min?1. The value of k?1 increased 0.01 to 0.3 min?1 but the value of k2 was unaltered at 7 min?1, so that EA/ETOT increased 15-fold, from 4% to 61%. (3) A cholera toxin pretreatment at 30 μg/ml allowed also a large increase in EA/ETOT with GTP (up to 51%) but the underlying mechanism was different. It consisted of a 14-fold decrease in the koff value of the GTP-activated enzyme (from 7 min? to 0.5 min?1) that corresponded to a reduction in GTPase activity. When testing the system with p[NH]ppG, two added effects of the cholera toxin pretreatment were observed: a 4-fold increase in the value of k+1 (from 0.2 to 0.8 min?1) and the occurrence of a significant 0.3 min?1 value for k?1.  相似文献   

6.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

7.
The currently observed Arctic warming will increase permafrost degradation followed by mineralization of formerly frozen organic matter to carbon dioxide (CO2) and methane (CH4). Despite increasing awareness of permafrost carbon vulnerability, the potential long‐term formation of trace gases from thawing permafrost remains unclear. The objective of the current study is to quantify the potential long‐term release of trace gases from permafrost organic matter. Therefore, Holocene and Pleistocene permafrost deposits were sampled in the Lena River Delta, Northeast Siberia. The sampled permafrost contained between 0.6% and 12.4% organic carbon. CO2 and CH4 production was measured for 1200 days in aerobic and anaerobic incubations at 4 °C. The derived fluxes were used to estimate parameters of a two pool carbon degradation model. Total CO2 production was similar in Holocene permafrost (1.3 ± 0.8 mg CO2‐C gdw?1 aerobically, 0.25 ± 0.13 mg CO2‐C gdw?1 anaerobically) as in 34 000–42 000‐year‐old Pleistocene permafrost (1.6 ± 1.2 mg CO2‐C gdw?1 aerobically, 0.26 ± 0.10 mg CO2‐C gdw?1 anaerobically). The main predictor for carbon mineralization was the content of organic matter. Anaerobic conditions strongly reduced carbon mineralization since only 25% of aerobically mineralized carbon was released as CO2 and CH4 in the absence of oxygen. CH4 production was low or absent in most of the Pleistocene permafrost and always started after a significant delay. After 1200 days on average 3.1% of initial carbon was mineralized to CO2 under aerobic conditions while without oxygen 0.55% were released as CO2 and 0.28% as CH4. The calibrated carbon degradation model predicted cumulative CO2 production over a period of 100 years accounting for 15.1% (aerobic) and 1.8% (anaerobic) of initial organic carbon, which is significantly less than recent estimates. The multiyear time series from the incubation experiments helps to more reliably constrain projections of future trace gas fluxes from thawing permafrost landscapes.  相似文献   

8.
Abstract: A previous study of the metabolism of 6-[18F]-fluoro-l -3,4-dihydroxyphenylalanine (FDOPA) in rats pretreated with carbidopa contained information amenable to kinetic analysis. Using these data, tracer transfer coefficients and metabolic rate constants were estimated. After intravenous injection, FDOPA in circulation was O-methylated (kD0 = 0.055 min?1), and the metabolite (O-methyl-FDOPA) escaped from plasma with a rate constant (kM?1) of 0.01 min?1. The initial clearance of FDOPA to striatum (KD1) was 0.07 ml g?1 min?1, and the equilibrium distribution volume (VDe) was 0.67 ml g?1. The initial clearance of O-methyl-FDOPA to striatum (KM1) was 0.08 ml g?1 min?1, and the equilibrium distribution volume (VMe) was 0.75 ml g?1. The rate constant of FDOPA decarboxylation (kD3) was 0.17 min?1 in striatum. The elimination of 6-[18F]fluorodopamine (FDA) from striatum suggested an apparent rate constant for monoamine oxidase activity (k7) of 0.055 min?1. 6-[18F]Fluorohomovanillic acid (FHVA) was formed from 6-[18F]fluoro-l -3,4-dihydroxyphenylacetic acid with a rate constant (k11) of 0.083 min?1, and FHVA was eliminated from striatum (k9) with a rate constant of 0.12 min?1. The steady-state concentration ratios of FDA and its metabolites were shown to be functions of these rate constants.  相似文献   

9.
Sea ice microalgae in McMurdo Sound, Antarctica were examined for photosynthesis-irradiance relationships and for the extent and time course of their photoadaptation to a reduction in in situ irradiance. Algae were collected from the bottom centimeter of coarse-grained congelation ice in an area free of natural snow cover. Photosynthetic rate was determined in short term (1 h) incubations at ?2° C over a range of irradiance from 0 to 286 μE·m?2·s?1. Assimilation numbers were consistently below 0.1 mg C·mg chl a?1·h?1. The Ik's3 averaged only 7 μE·m?2·s?1, and photosynthesis was inhibited at irradiances above 25 μE·m?2·s?1. Photosynthetic parameters of the ice algal community were examined over a nine day period following the addition of 4 cm of surface snow while a control area remained snow-free. A reduction of 40% in PmB relative to the control occurred after two days of snow cover; α, β, Ik, and Im were not significantly altered. Low assimilation numbers and constant standing crop size, however, suggested that the algal bloom may have already reached stationary growth phase, possibly minimizing their photoadaptive response.  相似文献   

10.
An important issue that should be taken into consideration when applying the molecules in photodynamic therapy (PDT) of cancer is the occurrence of homo-resonance energy transfer process between them. We have determined the probability of energy transfer for sodium zinc (II)-2,9,16,23-phthalocyanine tetracarboxylate (ZnPc(COONa)4) molecules in aqueous NaOH solution. The homo-quenching effect of the molecule was also measured by calculating the diffusion controlled bimolecular rate constant of k q = 6.5?×?109 M?1s?1, which did not show a significant competition with the rate constant of homo-resonance energy transfer process at the applied concentration of the molecules (6 μM). The Förster radius (R? 0) for ZnPc(COONa)4 molecules was calculated to be 42 Å. The availability of these calculations should facilitate the potential application of ZnPc(COONa)4 molecule as an anticancer drug in PDT.  相似文献   

11.
MCM‐41, a mesoporous silica nanomaterial with a high surface area for adsorption of small molecules, is a potential new type of delivery vehicle for therapeutic and diagnostic agents. In this report, we show that MCM‐41 adsorbs the front‐line anticancer drug carboplatin, [Pt(CBDCA‐O,O′)(NH3)2] (CBDCA=cyclobutane‐1,1‐dicarboxylate; 1 ), which is used to treat ovarian, lung, and other types of cancer. UV/Visible difference absorption spectroscopy shows that MCM‐41 adsorbs 1.8±0.2% of its own weight of carboplatin after a 24 h exposure to 26.9 mM drug in H2O. The pseudo‐first‐order rate constant for adsorption of carboplatin by MCM‐41, measured using [1H,15N] heteronuclear single quantum coherence (HSQC) NMR, and 15N‐labeled carboplatin is k1=2.92±2.17×10?6 s?1 at ca. 25°.  相似文献   

12.
The binding of cis(c)- and trans(t)-Pt(NH3)2Cl2 to DNA at platinum/DNA-nucleotide ratios (Ri) of 0.1 or less has been studied by means of radioactive 195mPt-labeled compounds. Kinetic data are consistent with the following scheme:
At 25°C and pH 5–6 in 5 mM NaClO4, the values for the rate constants in the above scheme for the c-isomer are k2 = 2.2 × 10?5 sec?1, k7 = 0.32 (sec M)?1, and k8 = 143 (sec M)?1; for the t-isomer the values are k2 < 0.5 × 10?5 sec?1 and k7 = 0.95 (sec M)?1. Platinum-DNA adducts do not undergo detectable exchange after 3 days at 37°C, indicating the absence of a dynamic equillibrium. For both isomers the rate of binding is the same for single- and double-stranded DNA. The conclusions derived from Ag+ and H+ titration studies are consistent with binding at guanine N(7) for Ri < 0.1. The reaction rate is competitively inhibited by various salts and buffers and is suppressed by raising the pH (50% inhibition of initial rates at pH 7.3). At 37°C and pH 7 in 0.15 M NaCl, 6–8% of both the c- and t-isomers bind to DNA in 24 h, suggesting that both compounds should bind to DNA under biological conditions.  相似文献   

13.
Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37°C and did not grow at 23 or 43°C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O2 and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O2. Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37°C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.  相似文献   

14.
Decomposition of phenyl acridinium-9-carboxylate is monitored using electrogenerated chemiluminescence in a flow system. The formation of the pseudobase from the acridinium ester [AE] is described by rate = k1[AE] + k1[AE][OH?]0.5, where k1 = 0.020 ± 0.006 s?1 and k1 = 2.1 ± 0.8 (L/mol)?0.5 s?1. Irreversible decomposition of the pseudobase is described by rate = k2[AE][OH?], where k2 = 20.1 ± 3.8 (L/mol s). These kinetic equations, plus measurement of variation in emission intensity for constant acridinium ester concentration, are used to predict the resulting emission intensity v. pH behaviour given various contact times (in the 0.25 to 25 s range) for the acridinium ester to be in an alkaline solution prior to initiation of the chemiluminescence reaction.  相似文献   

15.
[3H] quinuclidinyl benzilate (QNB), a specific muscarinic antagonist, was utilized to identify muscarinic cholinergic receptors on dispersed anterior pituitary cells. Scatchard analysis of [3H] QNB binding to receptors departs from linearity with upward concavity. A high affinity binding site having a dissociation constant (Kd) of 1.5 nM was observed when the [3H] QNB concentration was varied from 0.15 to 20 nM. A low affinity binding site (Kd 20 nM) was observed when [3H] QNB concentration was above 20 nM. Using 10 nM [3H] QNB for binding, the second order association rate constant (k1) of 0.064 nM?1 min?1 and first order dissociation rate constant (k2) of 0.078 min?1(T12 8 min) were observed. k2/k1 = Kd of 1.22 nM is in good agreement with Kd = 1.5 nM from equilibrium data. Muscarinic cholinergic receptor antagonists, atropine and scopolamine, and agonist oxtoremorine potently competed with [3H] QNB binding. A nicotinic cholinergic receptor agonist was 50 times less potent as a competitor of [3H] QNB binding than the muscarinic agonist.  相似文献   

16.
The binding of methyl isonitrile (CH3Nandz.tbnd;C) to hemoglobin β chains has been studied by measuring the 1H nuclear magnetic resonance transverse relaxation times for methyl isonitrile as a function of protein concentration, temperature and 14N decoupling. Binding of methyl isonitrile both at the heme iron and at a non-specific site (or sites) has an effect upon the measured nuclear spin relaxation times. The results yield a value of 57 ± 12 seconds?1 (20 °C) for the “off” rate constant K?1 for specific binding and an Arrhenius activation energy for k?1 of 14 ± 3 kcal mol?1.  相似文献   

17.
This research studied the effects of inorganic nutrient removal by free and immobilized Scenedesmus bijugatus cells, measured by algal growth (i.e., the chlorophyll a concentration) and the efficiency of the uptake of inorganic nutrients by the cells (uptake rate (b) and removal percentage) in water samples from the organically polluted Pinang River estuary (PRE). Water samples from the PRE were collected during low and high tide. S. bijugatus cells had a higher growth rate when incubated in low tide PRE water samples compared to high tide PRE water samples, with a growth rate of 0.29 µgml?1d?1 and 0.06 µgml?1d?1 for free and immobilized cells, respectively. S. bijugatus was able to more efficiently remove nitrogen, especially ammonium (81–94%), compared to phosphate (62–88%) from both low and high tide water samples. S. bijugatus cells in low tide PRE water samples recorded highest phosphate (0.36 mgL?1d?1 and 0.25 mgL?1d?1 for free and immobilized cells, respectively) and ammonium uptake rates (0.44 mgL?1d?1 and 0.29 mgL?1d?1 for free and immobilized cells respectively). Both inorganic nutrient removal and microalgal cell growth were not significantly different between free and immobilized S. bijugatus (p > 0.05). The data obtained indicated that the removal of nutrients by microalgae was affected by salinity and the immobilization technique applied may have good potential for bioremediation.  相似文献   

18.
2-deoxyglucose uptake rates at low sugar concentrations (less than 500 μM) appeared to be lower than those predicted by the Michaelis-Menten model which correctly described higher concentrations. This phenomenon which we will call concentration-dependent transport lag, was also observed for L-glucose uptake which suggest that this phenomenon is carrier-independent. A model involving the perimembrane space is developed which, for L-glucose, gives k1 = 0.931 ± 0.072 × 10?6 l. mg protein?1. minute?1, k2 = 2.97 ± 0.19 × 10?7 l. mg protein?1. minute?1 and So = 88,8 ± 4,3 μM; where k1 is the diffusion constant in the cell membrane, k2 is the diffusion constant in the perimembrane space and So the sugar concentration required in the external medium in order to provide an équivalent sugar concentration in the transport carrier area.  相似文献   

19.
Abstract

Saturation experiments were performed on intact human peripheral mononuclear leucocytes (MNL) and MNL membranes with (-)125Iodocyanopindolol (125ICYP) over a large concentration range (1.5-600pmol/l). The corresponding Scatchard plots were curvilinear suggesting two saturable classes of binding sites: A high affinity binding site (Bmax1=1000±400 sites/cell, Kd1= 2.1±0.9 pmol/l for intact MNL and Bmax1=550±190 sites/cell, Kd1=4.1±0.9 pmol/l for MNL membranes)and a low affinity binding site (Bmax2=9150±3590 binding sites/cell, Kd2=440±50 pmol/l for intact MNL and Bmax2=11560±4690 sites/cell, Kd2=410±70 pmol/l for MNL membranes). Dissociation of (-)125ICYP from MNL was biphasic consisting of a slow dissociating component (dissociation rate constant k-1=(0.5±0.2)x10?3 min?1 for intact MNL and k-1=(1.0±0.1)x10?3min?1 for MNL membranes) and a fast dissociating component (k-2=(80±20)x10?3min?1 for intact MNL and k-2=(60±10)x10?3min?1 for MNL membranes). In dissociation experiments started after equilibration with various (-)125ICYP concentrations k-1 and k-2 were independent of the equilibrium concentration, whereas the percentual occupancy of the slow and the fast dissociating component varied and was similar to the estimated fractional occupancy of either binding site at the same (-)125ICYP concentrations in saturation experiments. The association rate constant was in the same order of magnitude for both binding sites. These results suggest two independent classes of binding sites for (-)125ICYP on MNL.  相似文献   

20.
Electron microscopic and biochemical studies revealed a salient difference in the response to toxic doses of ouabain by cultured cardiac muscle and non-muscle cells from neonatal rats. Progressive cellular injury in myocytes incubated with 1 · 10?4–1 · 10?3 M ouabain ultimately leads to swelling and necrosis. The morphological damage in myocytes was accompanied by a drastic decrease in 14CO2 formation from 14C-labeled stearate or acetate but not glucose. Neither morphological nor biochemical impairments were observed in non-muscle cells. The interaction between ouabain and the cultured cells, using therapeutic doses of ouabain (i.e., <1 · 10?7 M), was characterized. Two binding sites were described in both classes of cells, one site is a saturable K+-sensitive site whereas the other is non-saturable and K+-insensitive. The complexes formed between the sarcolemma receptor(s) and ouabain, at low concentrations of the drug (e.g., 7.52 · 10?9 M), had Kd values of 8.9 · 10?8 and 2.3 · 10?8 M for muscle and non-muscle cells, respectively. The formation and dissociation of the complexes were affected by temperature and potassium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号