首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced reactivation (ER) and enhanced mutagenesis (EM) of herpes simplex virus type 1 were studied simultaneously in UV-irradiated stationary cultures of diploid normal human and xeroderma pigmentosum (XP) fibroblasts. Mutagenesis was assayed with unirradiated herpes simplex virus type 1 as a probe in a forward mutation assay (resistance to iododeoxycytidine). Dose-response studies showed that ER increased with the UV dose given to the virus. Optimal reactivation levels were obtained when normal cells and XP variant cells were exposed to a UV dose of 8 J . m-2 and the virus was irradiated with 150 J . m-2. Repair-deficient XP cells of complementation groups A, C, and D showed optimal reactivation levels with a UV dose to the cells of 1.0 J . m-2 and a UV dose to the virus of 40 J . m-2. The time course of appearance of ER and EM was also studied, both in the normal and XP cells. In all cell types except the XP variant cells, EM followed similar kinetics of appearance as did ER. Maximal activities occurred when infection was delayed 1 or 2 days after cell treatment. In XP variant cells, however, maximal expression of the EM function was significantly delayed with respect to ER. The results indicate that ER and EM are transiently expressed in normal and repair-deficient XP cells. Although both phenomena may be triggered by the same cellular event, ER and EM appear to be separate processes that occur independently of each other.  相似文献   

2.
The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus.  相似文献   

3.
The capacity of monolayers of both normal human and xeroderma pigmentosum (XP) filbroblasts to support plaque formation by herpes simplex virus was decreased when the monolayers were ultraviolet (UV) irradiated and infected with virus. Fibroblasts of XP complementation groups A, B, and D were sensitive to UV, being 4-6 fold more sensitive than either fibroblasts of XP complementation group C or fibroblasts from a normal individual. When the monolayers were irradiated 4 days prior to infection, the capacity of normal fibroblasts to support herpes virus growth recovered, whereas the capacity of the XP strains decreased further compared to that measured when infection immediately followed irradiation. Concurrent experiments with UV-irradiated herpes virus showed that the survival of this virus did not increase when infection by irradiated virus immediately followed irradiation of the monolayers. However, if the monolayers were irradiated 4 days prior to infection, the survival of this virus increased by a factor of nearly 2. Such Weigle reactivation (WR) occurred at lower fluences to the XP fibroblasts than to normal fibroblasts, suggesting that WR results from residual cellular DNA damage left after excision repair.  相似文献   

4.
Host-cell reactivation, that is, the degree of survival of Herpes simplex virus after UV irradiation, was high in African green monkey BSC-1 cells, intermediate in normal human fibroblasts and human FL cells, and low in both xeroderma pigmentosum (XP) cells and mouse L cells. However, colony-forming ability after UV was high for FL, normal human fibroblasts and L cells, slightly low for BSC-1 cells and extremely low for XP cells. During the 24-h post-UV incubation period, up to about 50% of the thymine-containing dimers in the acid-insoluble DNA fraction disappeared at an almost equal rate for BSC-1, FL and normal human cells but remained unaltered for the XP cells. Alkaline sucrose gradient centrifugation of DNA after UV irradiation revealed only a slight difference between FL and BSC-1 cells in the kinetics of formation of single-strand breaks and their apparent repair. From these and the previously known characters of L cells possessing reduced excision-repair ability, if any, we may conclude that, if the survival of UV-irradiated Herpes simplex virus on a test line of human or other mammalian cells is as low as that on excisionless XP cells, then it is very probable that the test cell line is defective in excision repair. This reasoning leads to the presumptive conclusion that mouse L cells have an enhanced post-replication repair other than excision repair to deal with UV damage responsible for inactivation of colony-forming ability.  相似文献   

5.
The DNA-repair capabilities of baby hamster kidney (BHK) cells were investigated by comparing the reactivation of irradiated herpes simplex virus type I (HSV1) in BHK cells with its reactivation in mouse fibroblasts and in normal and repairdeficient human diploid fibroblasts. BHK cells were found to have an intermediate ability to reactive UV-irradiated HSV1 (the viral Do was 14 J/m2) relative to normal human fibroblasts (viral Do = 19 J/m2) and xeroderma pigmentosum (XP) group A cells (viral Do = 4.5 J/m2). With mouse L929 cells as the host, the response of the UV-irradiated virus was biphasic with Dos of 4.6 and 30 J/m2 for the low- and high-dose components respectively. In contrast to the response following UV radiation, γ-irradiated HSV1 was similarly reactivated by BHK and normal human cells (the Dos for the irradiated virus in BHK and CRl 1106 were 55 and 51 krad, respectively, whereas xeroderma pigmentosum cells were slightly less efficient in the repair of γ-irradiated virus (Do = 45 krad). UV irradiation of BHK host cells 0–48 h prior to infection enhanced the reactivation of UV-irradiated HSV.  相似文献   

6.
J Das  J A Nowak    J Maniloff 《Journal of bacteriology》1977,129(3):1424-1427
The mycoplasma Acholeplasma laidlawii was shown to have mechanisms for both host cell and ultraviolet (UV) reactivation of UV-irradiated mycoplasmaviruses. Host cell reactivation was examined by comparing the survival abilities of UV-irradiated double-stranded deoxyribonucleic acid mycoplasmavirus plated on both untreated and on acriflavine-treated cells. Acriflavine treatment inhibited cell exision repair. Decreased survival on the acriflavine-treated cells demonstrated host cell reactivation. UV reactivation was studied by comparing the survival of UV-irradiated virus plated on untreated cells with its survival on cells that received a small UV dose before plating. The UV-irradiated cells gave increased virus survival, showing UV reactivation. Similar experiments with a single-stranded deoxyribonucleic acid mycoplasmavirus showed that this virus could be UV reactivated, but not host cell reactivated.  相似文献   

7.
Ahn B  Kang D  Kim H  Wei Q 《Molecules and cells》2004,18(2):249-255
DNA repair capacity in a cell could be detected by a host-cell reactivation assay (HCR). Since relation between DNA repair and genetic susceptibility to cancer remains unclear, it is necessary to identify DNA repair defects in human cancer cells. To assess DNA repair for breast cancer susceptibility, we developed a modified HCR assay using a plasmid containing a firefly luciferase gene damaged by mitomycin C (MMC), which forms interstrand cross-link (ICL) adducts. In particular, interstrand cross-link is thought to induce strand breaks being repaired by homologous recombination. The MMC-ICLs were verified by electrophoresis. Damaged plasmids were transfected into apparently normal human lymphocytes and NER-deficient XP cell lines and the DNA repair capacity of the cells were measured by quantifying the activity of the firefly luciferase. MMC lesion was repaired as much as UV adducts in normal lymphocytes and the XPC cells. However, the XPA cells have a lower repair capacity for MMC lesion than the XPC cell, indicating that the XPA protein may be involved in initial damage recognition of MMC-ICL adducts. Since several repair pathways including NER and recombination participate in MMC-ICL removal, this host cell reactivation assay using MMC-ICLs can be used in exploring DNA repair defects in human cancer cells.  相似文献   

8.
We have created a cell line that can repair damage in chromosomal DNA and in herpes virus, while not repairing the same damage in shuttle vectors (pZ189 and pRSVcat). This cell line, a xeroderma pigmentosum (XP) revertant, repairs the minor (6-4)-photoproducts, but not cyclobutane dimers, in chromosomal DNA. The phenotype of this revertant after irradiation with ultraviolet (UV) light is the same as that of normal cells for survival, repair replication, recovery of rates of DNA and RNA synthesis, and sister-chromatid exchange formation, which indicates that a failure to mend cyclobutane dimers may be irrelevant to the fate of irradiated human cells. The two shuttle vectors were grown in Escherichia coli and assayed during transient passage in human cells, whereas the herpes virus was grown and assayed exclusively in mammalian cells. The ability of the XP revertant to distinguish between the shuttle vector and herpes virus DNA molecules according to their 'cultural background', i.e., bacterial or mammalian, may indicate that one component of the repair of UV damage involves gene products that recognize DNA markers that are uniquely mammalian, such as DNA methylation patterns. This component of excision repair may be involved in the original defect and the reversion of XP group A cells.  相似文献   

9.
Disorders in the DNA repair in the human lymphocytes isolated from patients with Marfan's syndrome, homocystinuria, schizophrenia, and gout have been found. In this investigation criteria used estimating the DNA repair were the following: host cell reactivation (vaccinia virus reactivation) and its mutagenesis, DNA repair synthesis, resynthesis of DNA breakages. Lymphoblastoid interferon was used as a modulator of DNA repair activity. Pretreatment of normal human cells with interferon stimulated all steps of DNA repair. In human cells with disorders, interferon stimulated DNA repair (XP) in some cases but failed in others.  相似文献   

10.
We have created a cell line that can repair damage in chromosomal DNA and in herpes virus, while not repairing the same damage in shuttle vectors (pZ189 and pRSVcat). This cell line, a xeroderma pigmentosum (XP) revertant, repairs the minor (6-4)-photoproducts, but not cyclobutane dimers, in chromosomal DNA. The phenotype of this revertant after irradiation with ultraviolet (UV) light is the same as that of normal cells for survival, repair replication, recovery of rates of DNA and RNA synthesis, and sister-chromatid exchange formation, which indicates that a failure to mend cyclobutane dimers may be irrelevant to the fate of irradiated human cells. The two shuttle vectors were grown in Escherichia coli and assayed during transient passage in human cells, whereas the herpes virus was grown and assayed exclusively in mammalian cells. The ability of the XP revertant to distinguish between the shuttle vector and herpes virus DNA molecules according to their ‘cultural background’, i.e., bacterial or mammalian, may indicate that one component of the repair of UV damage involves gene products that recognize DNA markers that are uniquely mammalian, such as DNA methylation patterns. This component of excision repair may be involved in the original defect and the reversion of XP group A cells.  相似文献   

11.
The ability of UV-irradiated herpes simplex virus to form plaques was examined in monolayers of CV-1 monkey kidney cells preexposed to UV radiation at different intervals before virus assay. From analysis of UV reactivation (Weigle reactivation) curves it was found that as the interval between cell UV irradiation (0-20 J/m2) and initiation of the virus assay was increased over a period of five days, (1) the capacity of the cells to support unirradiated virus plaque formation, which was decreased immediately following UV exposure to the monolayers, increased and returned to approximately normal levels within five days, and (2) at five days an exponential increase was observed in the relative plaque formation of irradiated virus as a function of UV fluence to the monolayers. For high UV fluence (20 J/m2) to the cells, the relative plaque formation by the UV-irradiated virus at five days was about 10-fold higher than that obtained from assay on unirradiated cells. This enhancement in plaque formation is interpreted as a delayed expression of Weigle reactivation. The amount of enhancement resulting from this delayed reactivation was several fold greater than that produced by the Weigle reactivation which occurred when irradiated herpes virus was assayed immediately following cell irradiation.  相似文献   

12.
The induction of phenotypic wild-type revertants in the progeny of an unirradiated or UV-irradiated temperature-sensitive late mutant of simian virus 40 was studied after low multiplicity passages in normal or UV-irradiated confluent monkey kidney cells. The production of wild-type revertants in the progeny of undamaged tsBC245 was followed by infecting the cells at distinct times after irradiation of the cells. Mutation frequencies reached a maximum when infection was delayed for 3--4 days after irradiation of the host cells, and declined gradually thereafter. Virus grown in unirradiated cells did not show such an alteration in mutation frequency. The temporarily higher mutation frequency of virus in UV-pretreated cells is due to a transient mutator activity operating in these cells rather than to an increased number of replications performed in UV-irradiated cells. A similar time course was found for the reactivation of UV-damaged SV40. This might suggest that reactivation and mutagenesis are manifestations of the same process. The yield of mutants due to irradiation of the virus alone was enhanced when infection was delayed for some days after the cells reached confluency; UV pretreatment of the host cells did not enhance the level of mutation obtained by UV irradiation of the virus.  相似文献   

13.
The capacity of a variety of human fibroblasts to incise DNA following exposure to far ultraviolet-light is determined from the rate of single-strand DNA break accumulation in the presence of DNA synthesis inhibitors. We have quantitated incision, one of the early steps in the UV excision repair pathway, in cells form normal, xeroderma pigmentosum groups C, D, G, H and variant individuals, and in the parents of one XPA patient. On the basis of the estimated initial rates of incision the different XP cells examined in this work can be ranked as follows: XP variant much greater than XPH greater than XPH greater than XPD greater than XPC greater than XPG greater than XPA. In each cell strain breaks accumulate immediately after irradiation over a range of 0.5-20 Jm-2 with the exception of the XPC strain examined, where there is an initial delay of 15 min. The rate of incision in XPA heterozygote cells is roughly half that of normal fibroblasts. Analysis of the kinetics of break accumulation over short intervals after irradiation permits estimation of the apparent enzymatic parameters, Km and Vmax, for the incision step. The approximate values of Km and Vmax for normal and XP variant are similar while for the heterozygotes of an XPA individual Km values are normal (around 1 Jm-2), but there is only half the amount of normal enzyme activity. XPD and H cells express low levels of active enzyme, between 5 and 15% of that of the normal, but while the Km of XPH is very similar to that of normal cells, that of two XPD strains examined is between 2- and 3-fold higher.  相似文献   

14.
Nucleotide excision repair (NER) acts on a variety of DNA lesions, including damage induced by many chemotherapeutic drugs. Cancer therapy with such drugs might be improved by reducing the NER capacity of tumors. It is not known, however to what extent any individual NER protein is rate-limiting for any step of the repair reaction. We studied sensitivity to UV radiation and repair of DNA damage with regard to XPA, one of the core factors in the NER incision complex. About 150,000-200,000 molecules of XPA protein are present in NER proficient human cell lines, and no XPA protein in the XP-A cell line XP12RO. Transfected XP12RO cell lines expressing 50,000 or more XPA molecules/cell showed UV resistance similar to normal cells. Suppression of XPA protein to approximately 10,000 molecules/cell in a Tet-regulatable system modestly but significantly increased sensitivity to UV irradiation. No removal of cyclobutane pyrimidine dimers was detected in the SV40 immortalized cell lines tested. Repair proficient WI38-VA fibroblasts and transfected XP-A cells expressing 150,000 molecules of XPA/cell removed (6-4) photoproducts from the genome with a half-life of 1h. Cells in which XPA protein was reduced to about 10,000 molecules/cell removed (6-4) photoproducts more slowly, with a half-life of 3h. A reduced rate of repair of (6-4) photoproducts thus results in increased cellular sensitivity towards UV irradiation. These data indicate that XPA levels must be reduced to <10% of that present in a normal cell to render XPA a limiting factor for NER and consequent cellular sensitivity. To inhibit NER, it may be more effective to interfere with XPA protein function, rather than reducing XPA protein levels.  相似文献   

15.
R S Day 《Mutation research》1975,33(2-3):321-326
Caffeine is shown to block repair of ultraviolet-irradiated adenovirus 2 when the irradiated virus infects normal human fibroblasts from a xeroderma pigmentosum (XP) variant. Such blockage is not observed when the irradiated virus infects XP fibroblasts belonging to XP complementation group A. Thus normal and XP variant cells have a caffeine-sensitive repair process. This may be either excision or an excision dependent repair process because fibroblasts belonging to XP complementation group A are believed to lack the excision repair process.  相似文献   

16.
Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.  相似文献   

17.
Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis?) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not lead to higher mutagenesis in unirradiated cells. Thus the data did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic.  相似文献   

18.
Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. All UV-survival curves for HSV-2 plaque formation showed 2 components. HCR was similar to normal for the XP variant strain and the 2 CS strains tested, but substantially reduced in the 4 excision-deficient XP strains. The capacity of UV-irradiated fibroblasts to support HSV-2 plaque formation was determined by UV-irradiating fibroblast monolayers with various doses of UV and 48 h later, infecting the monolayers with unirradiated HSV-2. The D37 values for the delayed-capacity curves so obtained were in the range 8.6-12.4 J/m2 for the normal strains, 2.8-3.2 J/m2 for the CS strains, 6.7 J/m2 for an XP variant strain and between 0.3 and 1.5 for the XP excision-deficient strains tested. These results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. The magnitude of UVER expression was also found to be dependent on the UV dose to the cells and increased with increasing UV dose to the virus. Using a UV dose to the virus resulting in a plaque survival of about 10(-2) on unirradiated cells, the the maximum UVER factor had a mean value of 1.3 for the normal strains following a dose of 15 J/m2 to the cells. Somewhat higher UVER values were found for all the patient strains tested and resulted from lower UV doses to the cells than for normal strains. Maximum UVER factors for the CS strains ranged from 2.2 to 3.3 at a dose of 5 J/m2 to the cells, for the XP excision-deficient strains; 2.1 to 2.6 at doses of 0.5 to 2.5 J/m2 to the cells and for the XP variant strain tested; 2.5 at UV dose of 10 J/m2 to the cells.  相似文献   

19.
Cells from a xeroderma pigmentosum patient XP2BI who has reached 17 years of age with no keratoses or skin tumours constitute a new, 7th complementation group G. These cells exhibit a low residual level of excision repair, 2% of normal after a UV dose of 5 J/m2 and an impairment of post-replication repair characteristic of excision-defective XPs. They are also sensitive to the lethal effects of UV and defective in host-cell reactivation of UV-irradiated SV40 DNA.  相似文献   

20.
Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum (XP) cells, representative cell strains of the five complemention groups of XP and in XP "variant" cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: group A, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP "variant" cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号