首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The rate of DNA-chain elongation was studied in mouse FM3A cells after treatment with 8-methoxypsoralen plus near-ultraviolet radiation using the minimal doses (1 μg/ml 8-methoxypsoralen plus 1–2.5 kJ/m2 of near-ultraviolet radiation) which inhibited cell-cycle progression or DNA replication. A rapid decrease in incorporation of [3H]thymidine and recovery to some extent during incubation after treatment have been reported (Hyodo, M., Fujita, H., Suzuki, K., Yoshino, K., Matsuo, I. and Ohkido, M. (1982) Mutat. Res. 94, 199–211). The results of the present study showed that the rate was not changed suggesting that the decrease in [3H]thymidine incorporation was not due to the rate of DNA-chain elongation, but was due to change in the frequency of initiation of replication. Formation of DNA crosslinks was then studied by the sedimentation of pre-labeled DNA in an alkaline sucrose gradient. The results showed that, at these doses of 8-methoxypsoralen plus near-ultraviolet radiation, approx. 2–7 crosslinks were formed per 109 Da. It was also suggested that some of the DNA crosslinks might be repaired during the prolonged incubation, but unrepaired crosslinks were still present after 24 h incubation.  相似文献   

2.
Tritium-labelled uridine ([3H]UdR) perturbs progression of L1210 cells through the mitotic cycle. the main effect manifests as a slowdown or arrest of a portion of cells in G2 and is already observed 2 hr after addition of 0.5–5.0 μCi/ml of [3H]UdR into cultures. At 2.5–5.0 μCi/ml of [3H]UdR a slowdown of cell progression through S is also apparent. Additionally, there is an increase in the number of cells with DNA values higher than 4C in cultures growing in the presence of [3H]UdR for 8–24 hr. A pulse of [3H]UdR of 2 hr duration labels predominantly (95%) cellular RNA. the first cell-cycle effects (G2 slowdown) are observed when the amount of the incorporated [3H]UdR is such that, on average there are fewer than thirty-six [3H] decays per cell which corresponds to approximately 12–19 rads of radiation. the S-phase slowdown is seen at a dose of incorporated [3H]UdR twice as high as that inducing G2 effects. the specific localization of [3H]UdR in nucleoli, peripheral nucleoplasm and in cytoplasm, as well as differences in the kinetics of the incorporation in relation to phases of the cell cycle are discussed in the light of the differences between the effects of [3H]UdR and [3H]thymidine. Mathematical modelling of the cell-cycle effects of [3H]UdR is provided.  相似文献   

3.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

4.
Multiplication stimulating activity (MSA) has been purified from the conditioned media of rat liver cells in culture by a modification of the procedure of Dulak and Temin. Purified MSA stimulates [3H] thymidine incorporation into DNA in subconfluent, serum starved 3T3 cells. Cell cycle analysis by the flow microfluorometer shows that the [3H] thymidine incorporation data reflects DNA synthesis. MSA also stimulates the multiplication of serum starved subconfluent 3T3 cells. MSA is approximately 10-fold less active in 3T3 cells than in chick embryo fibroblasts in stimulating [3H] thymidine incorporation into DNA. MSA causes a 2–10-fold increase in ornithine decarboxylase (ODC) activity in 3T3 cells and the dose response curve parallels the dose response curve for [3H] thymidine incorporation into DNA. The Km of ODC for ornithine is 0.12 mM. There is a 30% decrease in the activity of ornithine transaminase (OTA) during the time period in which MSA causes an increase in ODC activity. Insulin also stimulates [3H] thymidine incorporation into DNA, cell multiplication and ODC activity over the same concentration range as shown for MSA, however, the extent of stimulation by insulin is less than that observed following MSA addition.  相似文献   

5.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

6.
By the method of sedimentation in 5–20% alkaline sucrose gradient, the process of maturation of the nascent DNA fragment was studied with cultured mouse FM3A cells treated with 8-methoxypsoralen plus near-ultraviolet radiation. This treatment is known to cause crosslinks of the chromosomal DNA strands. The profile of the newly-replicated DNA, labeled for 10 min with [3H]thymidine immediately after treatment, was the same as that of the untreated cells, where the incorporated radioactivity was present in the intermediate DNA fragment (about 50–80 S). But, when the treated cells were labeled after several hours of incubation, the labeled DNA became much shorter due to inhibition of maturation of the initial DNA fragment (the Okazaki fragment) to the intermediate DNA. With the use of aphidicolin, a specific inhibitor of eukaryotic DNA polymerase α, it became apparent that, in addition to formation of the crosslinks, further DNA replication is required to cause this inhibition of DNA maturation. Aphidicolin also suppressed the inhibition of incorporation of [3H]thymidine into cellular DNA after treatment, but inhibition of this incorporation resumed after its removal.  相似文献   

7.
Tritium-labelled uridine [( 3H]UdR) perturbs progression of L1210 cells through the mitotic cycle. The main effect manifests as a slowdown or arrest of a portion of cells in G2 and is already observed 2 hr after addition of 0.5-5.0 microCi/ml of [3H]UdR into cultures. At 2.5-5.0 microCi/ml of [3H]UdR a slowdown of cell progression through S is also apparent. Additionally, there is an increase in the number of cells with DNA values higher than 4C in cultures growing in the presence of [3H]UdR for 8-24 hr. A pulse of [3H]UdR of 2 hr duration labels predominantly (95%) cellular RNA. The first cell-cycle effects (G2 slowdown) are observed when the amount of the incorporated [3H]UdR is such that, on average there are fewer than thirty-six [3H] decays per cell which corresponds to approximately 12-19 rads of radiation. The S-phase slowdown is seen at a dose of incorporated [3H]UdR twice as high as that inducing G2 effects. The specific localization of [3H]UdR in nucleoli, peripheral nucleoplasm and in cytoplasm, as well as differences in the kinetics of the incorporation in relation to phases of the cell cycle are discussed in the light of the differences between the effects of [3H]UdR and [3H]thymidine. Mathematical modelling of the cell-cycle effects of [3H]UdR is provided.  相似文献   

8.
Summary Cultured cells from the bovine endosalpinx were used to evaluate effects of estradiol-17β, progesterone, epidermal growth factor, and insulinlike growth factors I and II on [3H]thymidine incorporation. Cells were treated with hormones and growth factors when approximately 50% confluent. After 24 h, DNA synthesis was quantified by pulsing cells with [3H]thymidine for 12 h and determining uptake into DNA. Cells prepared by mechanical dispersal incorporated more [3H]thymidine than cells dispersed with collagenase. However, hormonal responses were the same for both types of cells. As compared to plastic, cells on a Matrigel substratum exhibited lower incorporation of [3H]thymidine and were unresponsive to hormones. Estradiol-17β increased [3H]thymidine incorporation slightly at 10−10 mol/liter and higher. Epidermal growth factor, insulinlike growth factor-I, and insulinlike growth factor-II also stimulated [3H]thymidine incorporation. Effects of insulinlike growth factor-I were greater for cells treated with estradiol-17β. In the absence of estradiol, progesterone inhibited [3H]thymidine incorporation at 1, 10, and 100 ng/ml. When estradiol-17β was present, progesterone stimulated [3H]thymidine incorporation at 1 ng/ml and reduced incorporation at 100 ng/ml. In conclusion, [3H]thymidine incorporation by cultured oviductal endosalpingeal cells can be regulated by ovarian steroids and growth factors. These molecules may represent signals through which the ovary, embryo, and oviduct regulate oviductal growth. Work conducted while on a sabbatical leave supported by the Deutsche Forschungsgemeinschaft.  相似文献   

9.
In cultures of a murine mastocytoma, endogenous synthesis of thymidine phosphates, as determined by the incorporation of [3H]deoxyuridine into DNA, was reduced within 15 min to less than 3% of control values by the addition of amethopterin (10 µM) in combination with hypoxanthine and glycine. If [3H]thymidine and unlabeled thymidine were added simultaneously with amethopterin, the increase with time of radioactivity in cellular DNA was linear at least between 30 and 90 min, while radioactivity in the acid-soluble nucleotide fraction remained constant during this time interval, indicating that intracellular thymidine nucleotides had the same specific activity as exogenously supplied [3H]thymidine. This permitted calculation of the amount of thymidine incorporated per hour into DNA of 106 cells. In conjunction with the base composition of mouse DNA, these results were used to calculate rates of DNA synthesis. Cell proliferation rate, cell cycle time, and the duration of the S period were not affected to any appreciable extent by the addition of amethopterin and thymidine. Rates of DNA synthesis, as derived from thymidine incorporation rates, were in good agreement with those derived from the measured mean DNA content of exponentially multiplying cells and rates of cell proliferation.  相似文献   

10.
A direct comparison of [3H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [3H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [3H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [3H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [3H]thymidine incorporation and isotope dilution assays.  相似文献   

11.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of [3H]uridine incorporation into RNA and [3H]leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10−21 M). Insulin stimulated the rate of [3H]thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100–1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H]thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of [3H]uridine, [3H]thymidine and [3H]leucine into their respective precursor pools is not responsible for the apparent stimulatation of RNA, DNA and protein synthesis.  相似文献   

12.
Porcine skin nucleoplasmic extract (PSNE) was shown to alter the incorporation of [3H]thymidine into DNA of selected porcine, bovine, and human cell populations in culture. PSNE stimulated incorporation of [3H]thymidine into DNA of porcine and bovine dermal cells an average of 300 and 200% of control value, respectively. When porcine and bovine epidermal cells were exposed to PSNE the treatment inhibited [3H]thymidine incorporation into DNA by an average of 48 and 45%, respectively. Similar inhibitions were observed for porcine and bovine kidney, porcine lung, and human KB cells. Thus, the effect of PSNE on the incorporation of [3H]thymidine into DNA of various cultured cells was either stimulatory to dermal cells or inhibitory to a variety of other cell types, including skin epidermal cells. The stimulatory and inhibitory effects of PSNE were abolished by heating PSNE for 5 min in boiling water before its addition to cell cultures. This suggests that macromolecular structure is important in the action of PSNE. This project was supported by a grant from the Research Advisory Board, University of Nevada, Reno, NV.  相似文献   

13.
The effect of microwave radiation on the cell genome   总被引:12,自引:0,他引:12  
Cultured V79 Chinese hamster cells were exposed to continuous radiation, frequency 7.7 GHz, power density 30 mW/cm2 for 15, 30, and 60 min. The parameters investigated were the incorporation of [3H]thymidine and the frequency of chromosome aberrations. Data obtained by 2 methods (the incorporation of [3H]thymidine into DNA and autoradiography) showed that the inhibition of [3H]thymidine incorporation took place by complete prevention of DNA from entering into the S phase. The normal rate of incorporation of [3H]thymidine was recovered within 1 generation cycle of V79 cells. Mutagenic tests performed concurrently showed that even DNA macromolecules were involved in the process. In comparison with the control samples there was a higher frequency of specific chromosome lesions in cells that had been irradiated. Results discussed in this study suggest that microwave radiation causes changes in the synthesis as well as in the structure of DNA molecules.  相似文献   

14.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

15.
The purpose of this study was to determine the depth distribution of bacterial biomass and production in a stratified lake and to test techniques to measure bacterial production in anaerobic waters. Bacterial abundance and incorporation of both [3H]thymidine and [3H]leucine into protein were highest in the metalimnion, at the depth at which oxygen first became unmeasurable. In contrast, [3H]thymidine incorporation into DNA was highest in the epilimnion. The ratios of incorporation into DNA/protein averaged 2.2, 0.49, and 0.95 for the epilimnion, metalimnion, and hypolimnion, respectively. Low incorporation into DNA was not due to artifacts associated with the DNA isolation procedure. Recovery of added [3H]DNA was about 90% in waters in which the portion of [3H]thymidine incorporation into DNA was about 40%. At least some obligate anaerobic bacteria were capable of assimilating thymidine since aeration of anaerobic hypolimnion waters substantially inhibited thymidine incorporation. The depth profile of bacterial production estimated from total thymidine and leucine incorporation and the frequency of dividing cells were all similar, with maximal rates in the metalimnion. However, estimates of bacterial production based on frequency of dividing cells and leucine incorporation were usually significantly higher than estimates based on thymidine incorporation (using conversion factors from the literature), especially in anaerobic hypolimnion waters. These data indicate that the thymidine approach must be examined carefully if it is to be applied to aquatic systems with low oxygen concentrations. Our results also indicate that the interface between the aerobic epilimnion and anaerobic hypolimnion is the site of intense bacterial mineralization and biomass production which deserves further study.  相似文献   

16.
Replenishment of medium after 72 hr of growth of HeLa-S3 cells in dense suspension cultures increased [3H]-thymidine uptake into cells and incorporation into DNA, with the levels reaching a peak ~ 12 hr following medium change; β interferon inhibits the enhanced uptake of [3H]-thymidine and labeling of DNA in a dose-dependent manner. Some reduction in these processes is observed at a concentration as low as 1 u/ml, and ~ 75% inhibition at 640 u/ml. Kinetic analysis has revealed that the rate of labeling of the acid-soluble pool with [3H]-thymidine, measured either at 22°C, or 37°C, is reduced in interferon-treated (640 u/ml, 24 hr) HeLa-S3 cells. At 22°C, the initial rate of thymidine transport at a high (500 μM) thymidine concentration, determined within the first 30 sec of [3H]-thymidine addition was depressed by 44% in interferon-treated HeLa cells. At 37°C, labeled precursors accumulate in acid-soluble material for ~ 8 min after the addition of [3H]-thymidine, after which an apparent equilibrium level is attained. At this temperature, the rate of thymidine uptake and the apparent equilibrium level attained were depressed by 70% in interferon-treated HeLa cells. The reduced incorporation of [3H]-thymidine into DNA in interferon-treated HeLa-S3 cells can be largely explained by interferon inhibition of thymidine transport and phosphorylation.  相似文献   

17.
3-Deoxyglucosone (3DG), the main intermediate compound in the Maillard reaction of proteins with glucose, suppressed the proliferation of various cell lines by inhibition of DNA synthesis. We investigated the mechanism of the suppression of cell proliferation from the standpoint of the progression of cell cycle. When 3DG was added to the culture of 3Y1 cells, rat fibroblasts, growing in exponential phase, the addition of 300 or 600μg/ml of 3DG increased the numbers of the cells apparently arrested at the G1 or G2/M phase, respectively. We observed that 3DG specifically inhibited the time-dependent progression during the S phase of a synchronous culture released from the early S phase in 3Y1 cells. 3DG influenced the cells released from the GO phase but not the GO-arrested cells. When an intracellular concentration of reduced glutathione (GSH) in 3Y1 cells was decreased by using a GSH synthetase inhibitor, the inhibition of [3H]thymidine incorporation by 3DG was enhanced. Therefore, we assumed that the cells proliferating actively, in which the intracellular GSH concentrations have been reported to be lower, were more susceptible to the inhibitory effects of 3DG on the cell-cycle progression during the S phase.  相似文献   

18.
The methylation of nucleic acids has been investigated during the cell cycle of an asparagine dependent strain of transformed fibroblasts (BHK 21 HS 5). The synchrony was carried out by a partial asparagine starvation of cells for 24 hours. The amino acid supply induced all cells to enter synchronously the G1 phase. Methylation and DNA synthesis were respectively measured by pulsed [methyl-14C] methionine and [methyl-3H] thymidine incorporation. DNA methylation followed a biphasic pattern with maximal methyl incorporations during both S phase and mitosis. A partial desynchronisation induced the S phase of the second cycle to proceed before all the cells have achieved their division. Hydroxyurea was used in order to inhibit the DNA synthesis of cells entering the second cell cycle, which might interfer with the mitosis of the first one. The inhibitor was added either at the first beginning of cell division or during all the G1 phase. In both conditions it suppressed 3H thymidine incorporation of the second cycle. However, mitosis took place and methylations occurred as in previous experiments. The DNA methylation of the mitotic phase in the first cell cycle could thus be dissociated from the classical post-synthetic DNA maturation and did not correspond to any DNA methylation appearing in the course of the second cell cycle.  相似文献   

19.
Three independent techniques, [3H]thymidine incorporation, the reduction rate of p-iodonitrotetrazolium violet (INT) to INT formazan normalized to DNA, and the ratio of ATP to DNA, were adapted to measure the activity of attached and unattached estuarine bacteria. In experiments employing the estuarine isolate Vibrio proteolytica, nutrient concentrations were manipulated by varying the concentration of peptone-yeast extract. In the presence of exogenous nutrients, the activity of free-living cells was greater than that of attached cells as measured by [3H]thymidine incorporation and ATP/DNA ratios. In the absence of peptone-yeast extract, however, the activity of attached cells surpassed that of free-living cells as determined by [3H]thymidine incorporation and INT formazan normalized to DNA. Of the three techniques, [3H]thymidine incorporation was deemed most sensitive for detecting changes in activity resulting from slight differences in nutrient concentration. By this technique, attached cells were much less sensitive to changing nutrient concentrations than were free-living cells. Below a threshold concentration, attached cell activity remained constant, while the activity of unattached cells decreased as a function of decreasing nutrient concentration. The results suggest that loss of cell surface area available for substrate uptake due to attachment may be an important factor in determining the relative activities of attached and free-living cells.  相似文献   

20.
Biochemical fractionation studies of homogenates of massively luteinized ovaries showed that DNA could be isolated from mitochondrial and microsomal fractions of this tissue and that prolactin administration enhanced [3H]thymidine incorporation into mitochondrial DNA in vivo. These findings were confirmed by autoradiographic analysis of tissue sections at the light and electron microscopic levels. Further support for the existence of microsomal DNA in situ was provided by the autoradiographic detection of acid-insoluble grains from [3H]thymidine over the cytoplasm of differentiating corpora lutein cells in the control and experimental groups. A significant effect on [3H]thymidine incorporation into microsomal DNA by prolactin could not be demonstrated in this experimental system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号