首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Neuroblastoma cells grown on substrates in culture develop long processes and assume the morphology of normal neurons as judged light microscopically. The development of synapses in the cultured tissue is studied by periodic electron microscopic examination of the areas of contact between cells. The initial expiants are free of any apparent synaptic contacts. After 48 h in culture, simple swellings or boutons are detected at the periphery of the cells or at the end of the fine processes. These initial synaptic profiles contain a few vesicles but lack mitochondria. The synaptic vesicles appear to originate from the smooth endoplasmic reticulum. Further expiants remain primitive, only the number of vesicles in the cytoplasmic swellings or boutons increases. These clusters of vesicles are 40–60 nm in diameter and morphologically distinguishable from the synaptic vesicles of normal neurons. There are no postsynaptic folds or membrane thickenings. Specialized cell contacts between cells are also present.  相似文献   

2.
The mechanisms initiating and perpetuating the fibrogenic response in the injured liver are not well understood. Hepatic stellate cells are activated by liver injury to become proliferative and fibrogenic myofibroblasts. Emerging evidence suggests that the sympathetic nervous system may play a role in the development of cirrhosis. It is not known, however, whether this requires a direct interaction between sympathetic neurotransmitters and stellate cell receptors, or results indirectly, from sympathetic effects on the vasculature. Using cultured hepatic stellate cells, we show that the sympathetic neurotransmitters, norepinephrine and neuropeptide Y, markedly stimulate the proliferation of activated, myofibroblastic, hepatic stellate cells. Norepinephrine, but not neuropeptide Y, also induces collagen gene expression. In conclusion, physiologically relevant concentrations of sympathetic neurotransmitters directly modulate the phenotype of hepatic stellate cells. This suggests that targeted interruption of sympathetic nervous system signaling in hepatic stellate cells may be useful in constraining the fibrogenic response to liver injury.  相似文献   

3.
We have studied the mechanism for mobilization of retinol from stellate cells. Our data show that perisinusoidal stellate cells isolated from liver contained retinol-binding protein (RBP) mRNA. By Western blot analysis we found that cultivated liver stellate cells secreted RBP into the medium. Cultivated stellate cells loaded in vitro with [3H]retinyl ester mobilized radioactive retinol as a complex with RBP. Furthermore, exogenous RBP added to the medium of cultured stellate cells increased the secretion of retinol to the medium. These data suggest that liver stellate cells in vivo mobilize retinol directly to the blood and that a transfer to parenchymal cells for secretion as holo-RBP is not required. The direct mobilization of retinol from liver stellate cells as retinol-RBP to blood is indirectly supported by the demonstration of RBP mRNA production and RBP secretion by lung stellate cells. The data suggest that the same mechanism for retinol mobilization may exist in hepatic and extrahepatic stellate cells. This is, vitamin A-storing stellate cells in liver, lungs, and probably also in other organs may synthesize their own RBP (or alternatively use exogenous RBP) and mobilize holo-RBP directly to the blood.  相似文献   

4.
Summary The ultrastructure and biochemistry of the goldfish pineal organ were examined in expiants cultured for 1, 3, and 6 days. All four cell types (photoreceptor, supportive, ganglion, phagocytic) were identified; they exhibited many of the characteristics of these cells in vivo. Exceptions included a gradual disorganization of the outer segments and reduction of synaptic ribbons in photoreceptors with time in culture. In addition, there was a marked proliferation of endoplasmic reticulum in both photoreceptor and supportive cells. The indoles 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid, 5-methoxytryptophol, and melatonin were separated in expiants by high performance liquid chromatography using electrochemical detection. Serotonin levels could be depleted by p-chlorophenylalanine and elevated by nialamide or by adding 5-hydroxytryptophan to the culture medium. These findings suggest that organ culture may be a useful model for study of regulatory processes related to the photoneuroendocrine functions of the teleost pineal organ.  相似文献   

5.
Branched-chain amino acids (BCAAs) modulate various cellular functions, in addition to providing substrates for the production of proteins. In this study, we examined the effect of BCAAs on the secretion of hepatocyte growth factor (HGF) by hepatic stellate cells. A hepatic stellate cell clone was cultured in medium supplemented with various concentrations of valine, leucine, or isoleucine. Of these BCAAs, leucine markedly induced an increase in the levels of HGF in the medium in a dose-dependent manner. The addition of valine or isoleucine had no significant effect on HGF levels in the medium. The difference in levels of HGF in the medium between leucine-treated and non-treated cells was enhanced by the incubation period. These results demonstrate that, among BCAAs, leucine stimulates the secretion of HGF by cultured hepatic stellate cells.  相似文献   

6.
It is widely believed that DNA synthesis and expressions of smooth muscle alpha actin and TGF-beta are all together increased in activated hepatic stellate cells both in vitro and in vivo. Our previous reports disclosed that these increases did not always coexist under experimental conditions. Liver necrosis was induced in rats by oral administration of carbon tetrachloride. Hepatic stellate cells were isolated from these rats 2 days later. When these cells were cultured on plastic dishes for 3 days, they showed marked DNA synthesis and smooth muscle alpha actin and TGF-beta mRNA expressions assessed by (3)H-thymidine incorporation and Northern blotting, respectively. In the cells further cultured for 7 days, the DNA synthesis was decreased, whereas both smooth muscle alpha actin and TGF-beta mRNA expressions were increased, compared to the cells cultured for 3 days. The cells cultured for 10 days showed apoptotic nuclei positive for nick-end labeling, and DNA extracted from the cells revealed laddering patterns on agarose gels by electrophoresis. Apoptotic nuclei were also immunohistochemically found in stellate cells in the liver of rats 4 days after the intoxication. We conclude that apoptosis developed in activated hepatic stellate cells both in vitro and in vivo, and this may contribute to the discrepancy between DNA synthesis and cellular functions of the cells.  相似文献   

7.
Summary Recent studies have noted the presence of putative stem cells derived from the connective tissues associated with skeletal muscle, heart, and dermis. Long-term continuous cultures of these cells from each tissue demonstrated five distinct phenotypes of mesodermal origin, i.e. muscle, fat, cartilage, bone, and connective tissue. Clonal analysis was performed to determine whether these morphologies were the result of a mixed population of lineage-committed stem cells or the differentiation of pluripotent stem cells or both. Putative stem cells from four tissues (skeletal muscle, dermis, atria, and ventricle) were isolated and cloned. Combined, 1158 clones were generated from the initial cloning and two subsequent subclonings. Plating efficiency approximated 5.8%. Approximately 70% of the 1158 clones displayed a pure stellate morphology, while the remaining clones contained a mixture of stellate, chondrogenic- or osteogenic-like morphologies or both. When cultured in the presence of dexamethasone, cells from all clones differentiated in a time- and concentration-dependent manner into muscle, fat, cartilage, and bone. These results suggest that pluripotent mesenchymal stem cells are present within the connective tissues of skeletal muscle, dermis, and heart and may prove useful for studies concerning the regulation of stem cell differentiation, wound healing, and tissue restoration, replacement and repair.  相似文献   

8.
The process of palate shelf elevation has been analyzed by light microscopy in mouse embryos cultured in vitro. The observations presented correlate changes in cell shape and orientation in the palate with the morphogenetic movement of the shelf. These studies suggest that in addition to any physical-chemical force elevating the shelf an active contraction of specific palate cells could also aid the process. Contribution to elevation could be derived from masses of contracting cells from the previously described non-muscle contractile systems in posterior (region 2) and mid-anterior (region 3) palate as well as other peripheral mesenchymal cells. Finally, elongation and contraction of the tongue side epithelial cells may also play a role in palate elevation.  相似文献   

9.
Activated hepatic stellate cells produce vascular endothelial growth factor (VEGF). VEGF has been shown to act on mesenchymal cells as well. If hepatic stellate cells can express FLT tyrosine receptor family, flt-1 and KDR/flk-1, their function might be regulated by VEGF in an autocrine manner. This hypothesis was tested using hepatic stellate cells isolated from normal rats. Northern blot analysis and immunocytochemical study revealed that hepatic stellate cells cultured for 3 days on plastic dishes expressed both flt-1 and KDR/flk-1. When the culture was prolonged to 10 days, the flt-1 mRNA expression was increased, whereas both KDR/flk-1 mRNA and protein expressions diminished. DNA and collagen syntheses were minimal in the cells cultured for 3 days, but marked in those cultured for 10 days. Addition of recombinant human VEGF to the culture medium did not change both syntheses but attenuated an increase of smooth muscle alpha-actin expression in the cells during culture on plastic dishes and also contraction of collagen gels on which the cells were cultured. We conclude that VEGF may inhibit contraction of hepatic stellate cells appearing during activation by culture, probably through attenuation of smooth muscle alpha-actin expression via upregulated VEGF receptor, flt-1.  相似文献   

10.
11.
The three-dimensional structure of the extracellular substratum was found to regulate reversibly the morphology, proliferation and collagen synthesis of perisinusoidal stellate cells (lipocytes, i.e. fat-storing ‘Ito’ cells). On non-coated polystyrene and type I collagen-coated culture dishes, the cells spread well and extended their cellular processes. On the surface of type I collagen gels, the cells gathered and formed a mesh-like structure. However, in type I collagen gel where the cells were surrounded by type I collagen three-dimensionally, the cells extended their fine cellular processes and resembled the star-shaped stellate cells seenin vivo. The cell proliferation was more prominent in culture dishes coated with type I collagen or in polystyrene culture dishes than on or in type I collagen gels. The collagen synthesis was affected in the same manner. These data indicate that the nature and the three-dimensional structure of the extracellular matrix (ECM) can regulate morphology, proliferation and functions of the perisinusoidal stellate cells. In order to examine the reversibility of these regulations, we liberated cultured cells with trypsin or with purified bacterial collagenase and re-seeded them onto or into each substratum. The cells changed their shape, rate of proliferation and collagen synthesis according to each new substratum. These results indicate that the three-dimensional structure of ECM reversibly regulates the morphology, proliferation rate and functions of the perisinusoidal stellate cells.  相似文献   

12.
Summary The aims of this study were to investigate the differentiating capacity of adenohypophysial LH cells in a serum-free culture medium and to test whether cytogenesis is affected by synthetic LHRH. The adenohypophysial primordia of fetal rats were isolated on days 11.5 and 12.5 of gestation and cultured without serum for 10 and 9 days, respectively, in synthetic Medium 199 or MEM. Immunohistochemical examination using the PAP method revealed that most culture expiants, apart from a few degenerate ones, contained LH cells. In comparison with Medium 199, which has been widely used as a culture medium for hypophysial explants, aMEM gave far better results and the primordia cultured in this medium showed better tissue growth and contained a greater number of LH cells.Administration of synthetic LHRH (10 ng/ml) on the first day of culturing had no effect on the number of LH cells, no matter whether or not the culture medium was supplemented with insulin, transferrin or thyroxine. These results suggest that at the early developmental stage LHRH is not essential for the differentiation and/or proliferation of LH cells.  相似文献   

13.
14.
《Cytotherapy》2014,16(8):1132-1144
BackgroundIntravenous infusion of human amniotic epithelial cells (hAECs) has been shown to ameliorate hepatic fibrosis in murine models. Hepatic stellate cells (HSCs) are the principal collagen-secreting cells in the liver. The aim of this study was to investigate whether factors secreted by hAECs and present in hAEC-conditioned medium (CM) have anti-fibrotic effects on activated human HSCs.MethodsHuman AECs were isolated from the placenta and cultured. Human hepatic stellate cells were exposed to hAEC CM to determine potential anti-fibrotic effects.ResultsHSCs treated for 48 h with hAEC CM displayed a significant reduction in the expression of the myofibroblast markers α-smooth muscle actin and platelet-derived growth factor. Expression of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1) and intracellular collagen were reduced by 45% and 46%, respectively. Human AEC CM induced HSC apoptosis in 11.8% of treated cells and reduced HSC proliferation. Soluble human leukocyte antigen–G1, a hAEC-derived factor, significantly decreased TGF-β1 and collagen production in activated HSCs, although the effect on collagen production was less than that of hAEC CM. The reduction in collagen and TGF-B1 could not be attributed to PGE2, relaxin, IL-10, TGF-B3, FasL or TRAIL.ConclusionsHuman AEC CM treatment suppresses markers of activation, proliferation and fibrosis in human HSCs as well as inducing apoptosis and reducing proliferation. Human AEC CM treatment may be effective in ameliorating liver fibrosis and warrants further study.  相似文献   

15.
Summary The ultrastructure of differentiating rat presumptive olfactory bulb in organ culture was investigated with particular reference to mitral cell differentiation and formation of synapses. The presumptive olfactory bulb and olfactory mucosa were dissected en bloc from rat embryos on the fifteenth day of gestation and cultured for 7 days, after which the expiants were examined by electron microscopy. The presumptive olfactory bulb had differentiated into a laminated structure with layers corresponding to the glomerular, external plexiform and mitral cell layers. Mitral-like cells were identified by their location and large cell size. Ultrastructural observations indicated that they were relatively well-differentiated. Their dendrites extended into the glomerular layer in which they were postsynaptic to incoming olfactory axons. The distal part of these dendrites frequently contained coated vesicles. Both asymmetrical and symmetrical synapses were found. The symmetrical synapses involved dendrodendritic contacts between periglomerular cells. Synapses in reciprocal arrangements were not observed in the organ cultures.  相似文献   

16.
Monacelli  B.  Altamura  M. M.  Pasqua  G.  Biasini  M. G.  Sala  F. 《Protoplasma》1988,142(2-3):156-163
Summary A histological study ofin vitro cultured cotyledonary expiants of tomato (Lycopersicon esculentum) was performed in order to determine the site (differentiated tissue or developing callus) and the mode of plant regeneration.Results have shown that callus develops at the excision sites of cotyledonary expiants and that shoots are formed exclusively within the unorganized callus: excision areas are the only morphogenetic sites and the proximal excision is the preferred site for plant regeneration.Shoots differentiate by organogenesis within the superficial region of the callus. Few neocambial cells cooperate in the neoformation. Origin from a single cell is highly unlikely since rarely observed single activated cells never developed into shoots.Regenerated plants may be chimeras if invitro culture induces genetic diversity in the initial cells.Abbreviations IAA Indole-3-acetic acid - c callus - d vegetative dome - s shoot - ad adaxial - ab abaxial - t tracheid - p parenchyma - S sieve tube  相似文献   

17.
Liver is a major site of retinoid metabolism and storage, and more than 80% of the liver retinoids are stored in hepatic stellate cells. These cells represent less than 1% of the total liver protein, reaching a very high relative intracellular retinoid concentration. The plasma level of retinol is maintained close to 2 M, and hepatic stellate cells have to be able both to uptake or to release retinol depending upon the extracellular retinol status. In view of their paucity in the liver tissue, stellate cells have been studied in primary cultures, in which they loose rapidly the stored lipids and retinol, and convert spontaneously into the activated myofibroblast phenotype, turning a long-term study of their retinol metabolism impossible. We have analyzed the retinol metabolism in the established GRX cell line, representative of stellate cells. We showed that this cell line behaves very similarly, with respect the retinol uptake and release, to primary cultures of hepatic stellate cells. Moreover, we showed that the cellular retinol binding protein (CRBP-I) expression in these cells, relevant for both uptake and esterification of retinol, responds to the extracellular retinol status, and is correlated to the retinol binding capacity of the cytosol. Its expression is not associated with the overall induction of the lipocyte phenotype by other agents. We conclude that the GRX cell line represents an in vitro model of hepatic stellate cells, and responds very efficiently to wide variations of the extracellular retinol status by autonomous controls of its uptake, storage or release.  相似文献   

18.
Hepatic stellate cells (HSCs), also referred to as Ito cells, perisinusiodal cells and fat-storing cells, have numerous vital functions. They are the main extracellular matrix-producing cells within the liver and are involved in the storage of retinol. HSCs are also known to secrete a number of liver mitogens. Current isolation techniques are cumbersome and most require a pronase digestion step, which destroys any hepatocytes present. We present a simple method for isolation and culture of hepatic stellate cells from the normally discarded washings from a two-step collagenase hepatocyte isolation, which has shown a yield of more than 1.5 × 106 viable HSCs after 5 days in culture. The cells were positively identified as HSCs by staining for two intermediate filaments (desmin and GFAP) and observing their distinct morphology from other liver cell types. This efficient method allows rapid and consistent isolation of stellate cells to give a culture that may be passaged several times.  相似文献   

19.
Liver fibrosis occurs in most types of chronic liver diseases and is characterized by excessive accumulation of extracellular matrix proteins, leading to disruption of tissue function and eventually organ failure. Transforming growth factor (TGF)-β represents an important pro-fibrogenic factor and aberrant TGF-β action has been implicated in many disease processes of the liver. Endoglin is a TGF-β co-receptor expressed mainly in endothelial cells that has been shown to differentially regulates TGF-β signal transduction by inhibiting ALK5-Smad2/3 signalling and augmenting ALK1-Smad1/5 signalling. Recent reports demonstrating upregulation of endoglin expression in pro-fibrogenic cell types such as scleroderma fibroblasts and hepatic stellate cells have led to studies exploring the potential involvement of this TGF-β co-receptor in organ fibrosis. A recent article by Meurer and colleagues now shows that endoglin expression is increased in transdifferentiating hepatic stellate cells in vitro and in two different models (carbon tetrachloride intoxication and bile duct ligation) of liver fibrosis in vivo. Moreover, they show that endoglin overexpression in hepatic stellate cells is associated with enhanced TGF-β-driven Smad1/5 phosphorylation and α-smooth muscle actin production without altering Smad2/3 signaling. These findings suggest that endoglin may play an important role in hepatic fibrosis by altering the balance of TGF-β signaling via the ALK1-Smad1/5 and ALK-Smad2/3 pathways and raise the possibility that targeting endoglin expression in transdifferentiating hepatic stellate cells may represent a novel therapeutic strategy for the treatment of liver fibrosis.  相似文献   

20.
Nestin is an intermediate filament protein expressed by neuroepithelial stem cells and which has been proposed to represent also a marker for putative islet stem cells. The aim of this study was to characterize the cell type(s) expressing nestin in the rat pancreas. By immunohistochemistry, nestin positivity was localized exclusively in mesenchymal cells of normal and regenerating adult pancreas. In the latter condition, the number of nestin-positive cells and the intensity of nestin immunoreactivity were greatly increased. Most nestin-positive cells had the morphology of stellate cells, a type of pericyte associated with blood vessels which has been previously reported to occur in liver and pancreas. In addition, nestin positivity was present in endothelial cells from neocapillaries during pancreas regeneration, and in all blood vessels during morphogenesis in fetal pancreas. Nestin expression was not found in the ductal epithelial cells from which islet cells originate in fetal and regenerating pancreas. In primary pancreatic tissue explants, nestin-positive mesenchymal cells rapidly attached to plastic and proliferated. These cells also expressed desmin, vimentin, and glial fibrillary acidic protein which are known to represent stellate cell markers. In summary, nestin in the pancreas is primarily a marker for reactive stellate cells, or pericytes, and endothelial cells during active angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号