首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When fluorescent pseudomonads are cultured on standard solid media under iron limiting conditions, they produce fluorescent, pigmented iron collating agents (siderophores). Siderophores can be readily identified by strong fluorescence seen under UV/blue light. The application of the eukaryotic green fluorescent protein (GFP) as a bacterial marker in microbial ecology is increasingly being used, particularly as it is a powerful method for non-destructive monitoring in situ. As gfp expressing bacteria have to be detected under UV/blue light, the fluorescence of siderophore-producing Pseudomonas spp. masks normal levels of GFP fluorescence when colonies are viewed on standard bacterial agar. Here, we describe a simple but effective way of identifying gfp-expressing Pseudomonas fluorescens using media supplemented with 0.45 mM FeSO(4).7H(2)O. This is of relevance for the screening of insertion libraries and in the application of GFP transposons as promoter probes.  相似文献   

2.
The fast and easy in vivo detection predestines the green fluorescent protein (GFP) for its use as a reporter to quantify promoter activities. We have increased the sensitivity of GFP detection 320-fold compared to the wild-type by constructing gfp+, which contains mutations improving the folding efficiency and the fluorescence yield of GFP+. Twelve expression levels were measured using fusions of the gfp+ and lacZ genes with the tetA promoter in Escherichia coli. The agreement of GFP+ fluorescence with beta-galactosidase activities was excellent, demonstrating that the gfp+ gene can be used to accurately quantify gene expression in vivo. However, expression of the gfp+ gene from the stronger hsp60 promoter revealed that high cellular concentrations of GFP+ caused an inner filter effect reducing the fluorescence by 50%, thus underestimating promoter activity. This effect is probably due to the higher absorbance of cells containing GFP+. Thus promoters with activities differing by about two orders of magnitude can be correctly quantified using the gfp+ gene. Possibilities of using GFP variants beyond this range are discussed.  相似文献   

3.
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  相似文献   

4.
Tracheal antimicrobial peptides (TAP) are expressed primarily in respiratory epithelial cells of cattle. The TAP expression is inducible upon challenge with bacteria and bacterial lipopolysaccharide (LPS). In pigs, a promoter that can be activated by bacterial infection has yet to be identified. The objective of this study was to use green fluorescent protein (GFP) as a reporter gene to determine the function and inducibility of the bovine TAP promoter in porcine primary tracheal epithelial cells. Thus, evaluating the feasibility of using this promoter to direct transgene expression in porcine cells.The percentage of GFP expressing cells increased in response to LPS challenge in both a dose-dependent and time-dependent manner (p < 0.05). Moreover, when the intensity of the GFP fluorescence was measured, it was observed that the percentage of cells that have a high intensity of GFP fluorescence, also increased gradually as LPS dose increased, the difference between the unchallenged (control) and challenged group become statistically significant at the concentration of 100 ng/mL after 36 h LPS challenge (p < 0.05). The level of induced-expression driven by the TAP promoter was 67.8 +/-12.2% that of the cytomegalovirus (CMV) promoter. The intensity of GFP fluorescence by the TAP promoter was 39.8 +/- 7.6% when compared to the expression driven by the CMV promoter. These data suggest the TAP promoter functions at a lower, but comparable, level to the strong CMV promoter.Our data demonstrated that the bovine TAP promoter was functional in porcine primary tracheal epithelial cells. The ability of the TAP promoter to control gene expression in an inducible manner in the porcine respiratory tract presents an important application potential in transgenic animal studies.  相似文献   

5.
There are surprisingly few studies that have successfully used the green fluorescent protein (GFP) as a quantitative reporter in selection experiments screening for inducible bacterial promoters. One explanation is that GFP expression may confer a fitness cost for bacteria. To test this possibility, we monitored the doubling time in enteric bacteria expressing GFP. Four bacterial species, Escherichia coli, enterohaemorrhagic E. coli, Shigella flexneri, Salmonella typhi, and Vibrio cholerae, were examined. The level of GFP expression was varied by using a salt-inducible promoter. After accounting for the increase in doubling time resulting from elevated osmolarity, the doubling time of all bacteria was found to increase proportionally with GFP expression, and some strains were more affected than others. Cultures of the bacteria most affected by GFP exhibited a proportion of elongated cells, which suggests that GFP production could interfere with cell division in these strains. The results in this study show that GFP is costly to bacteria and suggest that overly active promoters should be difficult to obtain from a genomic promoter library. They also suggest that the chances of succeeding in using GFP as a reporter in selection experiments are increased by growing the bacteria for the fewest number of generations and by subduing the expression of GFP whenever possible, such as by using a low copy vector to clone the library.  相似文献   

6.
The vector pCW5 with plasmid pC7, originally isolated in Lactobacillus paraplantarum C7 derived from kimchi, was constructed using a p32 strong promoter, the pC7 replicon, and green fluorescent protein (GFP) as the reporter. The constructed vector was transformed into E. coli and Leuconostoc mesenteroides, and GFP expression detected using a Western blot analysis. GFP fluorescence was recognized in E. coli and Leuconostoc mesenteroides using a confocal microscope. In addition, GFP fluorescence was also clearly detected in several industrially important lactic acid bacteria (LAB), including Lactobacillus bulgaricus, Lactobacillus paraplantarum, and Lactobacillus plantarum. Thus, pCW5 was shown to be effective for Leuconostoc mesenteroides when using GFP as the reporter, and it can also be used as a broad-host-range vector for other lactic acid bacteria.  相似文献   

7.
The green fluorescent protein (GFP) isolated from the jellyfish Aequorea victoria is a very useful reporter for real-time bioprocess sensing. GFP culture fluorescence is a composite signal that can be influenced by factors such as culture autofluorescence, inner filter effect (IFE), and photobleaching. These factors complicate accurate estimation of GFP concentrations from the culture fluorescence. IFE is especially problematic when using GFP in monitoring transgenic plant cell suspension cultures, due to the aggregated nature of the cells and the high biomass concentration in these culture systems. Reported approaches for online compensation of IFE in monitoring culture NADH fluorescence or bioluminescence require online measurement of biomass density or culture turbidity/optical density, in addition to fluorescence/bioluminescence measurement. In this study, culture GFP fluorescence was used successfully to estimate GFP concentration and other important states in bioreactor culture of transgenic tobacco cells, while the influences of IFE and culture autofluorescence were rectified without the need for an additional biomass sensor. This was achieved by setting up a novel model-based state observer. First, we developed an improved model for a backscatter fluorescence probe that takes into account the influence of IFE and autofluorescence on reporting culture GFP concentration from online fluorescence. The state observer was then established using the extended Kalman filter (EKF), based on the fluorescence probe model, a dynamic state model of the plant cell bioreactor, and online GFP fluorescence measurement. Several versions of the observer were introduced to address practical requirements associated with monitoring GFP fluorescence of plant cell cultures. The proposed approach offers an effective means for online compensation of IFE to enable quantitative interpretation of the culture fluorescence signals for accurate reporting of GFP or GFP-fusion protein expression.  相似文献   

8.
Green fluorescent protein (GFP) is a highly useful fluorescent tag for studying the localization, structure, and dynamics of macromolecules in living cells, and has quickly become a primary tool for analysis of DNA and protein localization in prokaryotes. Several properties of GFP make it an attractive and versatile reporter. It is fluorescent and soluble in a wide variety of species, can be monitored noninvasively by external illumination, and needs no external substrates. Localization of GFP fusion proteins can be analyzed in live bacteria, therefore eliminating potential fixation artifacts and enabling real-time monitoring of dynamics in situ. Such real-time studies have been facilitated by brighter, more soluble GFP variants. In addition, red-shifted GFPs that can be excited by blue light have lessened the problem of UV-induced toxicity and photobleaching. The self-contained domain structure of GFP reduces the chance of major perturbations to GFP fluorescence by fused proteins and, conversely, to the activities of the proteins to which it is fused. As a result, many proteins fused to GFP retain their activities. The stability of GFP also allows detection of its fluorescence in vitro during protein purification and in cells fixed for indirect immunofluorescence and other staining protocols. Finally, the different properties of GFP variants have given rise to several technological innovations in the study of cellular physiology that should prove useful for studies in live bacteria. These include fluorescence resonance energy transfer (FRET) for studying protein-protein interactions and specially engineered GFP constructs for direct determination of cellular ion fluxes.  相似文献   

9.
Green fluorescent protein (GFP) is a reporter that has had a significant impact due to its many advantages over other reporter genes: it is autofluorescent, it enables in situ detection, it is relatively small, and it is also nontoxic. By cloning a gene promoter upstream of the gfp gene and exposing the living cells transformed with the fusion to the specific inducer or repressor, gene expression can be real-time monitored by continuous quantitative measurement of the green fluorescence emitted by GFP. In this work, a promoter study using promoter-gfp fusions was conducted in 96-well plates. Because they were placed in an automated incubating and shaking microplate reader, the wells functioned as microscale bioreactors, allowing for parallel experiments and data analysis. In the study described here, an overexpression promoter (pBAD promoter) and two comparatively weak promoters (sodA and acnA in Escherichia coli SoxRS regulon) were studied in both endpoint and kinetics formats. Our results with the pBAD promoter revealed insight on its regulation, which is tightly controlled by levels of arabinose and glucose. Results on weak oxidative stress promoters (for sodA and acnA genes) were striking in that significant induction was observed when they were under a superoxide stress in plates. They both displayed dose-dependent induction to paraquat-generated superoxide anion, with sodA leading acnA in strength and time. These results, spanning highly inducible promoters for protein overexpression and weakly inducible promoters of metabolic interest, demonstrate that the approach is relatively easily executed and can be used for quantitative and temporal promoter studies in a high throughput format.  相似文献   

10.
The color of mice: in the light of GFP-variant reporters   总被引:7,自引:0,他引:7  
The mouse currently represents the premier model organism for mammalian genetic studies. Over the past decade the production of targeted and transgenic lines of mice has become commonplace, with current technology allowing the creation of mutations at base pair resolution. Such genome modifications are becoming increasingly elaborate and often incorporate gene-based reporters for tagging different cellular populations. Until recently, lacZ, the bacterial beta-galactosidase gene has been the marker of choice for most studies in the mouse. However, over the past 3 years another valuable reporter has emerged, and its attractiveness is reflected by an explosion in its use in mice. Green fluorescent protein (GFP), a novel autofluorescent genetic reporter derived from the bioluminescent jellyfish Aequorea victoria, currently represents a unique alternative to other gene-based reporters in that its visualization is non-invasive and so can be monitored in real-time in vitro or in vivo. It has the added advantage that it can be quantified by, for example, flow cytometry, confocal microscopy, and fluorometric assays. Several mutants of the original wild-type GFP gene that improve thermostability and fluorescence have been engineered. Enhanced GFP is one such variant, which has gained popularity for use in transgenic or targeted mice. Moreover, various GFP spectral variants have also been developed, and two of these novel color variants, enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP), can also be used in mice. Since the spectral profiles of the ECFP and EYFP color variants are distinct and non-overlapping, these two reporters can be co-visualized, and are therefore ideal for in vivo double-labeling or fluorescent energy transfer analyses. The use of GFP and its color variants as reporters provides an unprecedented level of sophistication and represents the next step in mouse genome engineering technology by opening up the possibility of combinatorial non-invasive reporter usage within a single animal.  相似文献   

11.
Many bacteria are now known to enter into a “viable but nonculturable” (VBNC) state in response to various environmental stresses. In this state, the cells are no longer culturable on routine media, but retain viability and in many cases have been shown to be capable of resuscitating to the metabolically active and culturable state. There have been no simple means of measuring the metabolic activity of cells in the VBNC state. The use of green fluorescent protein (GFP) variants with short half-lives was examined in cells intended for environmental release to examine the potential of GFP as a reporter of metabolic activity. Unlike strains with the native (stable) GFP, Pseudomonas putida strains tagged with unstable GFP rapidly lost GFP fluorescence following exposure to starvation and VBNC-inducing conditions. Our results suggest that tagging cells with the modified GFP provides a method for determining metabolic activity in these cells.  相似文献   

12.
Mutations that suppress the thermosensitivity of green fluorescent protein   总被引:1,自引:0,他引:1  
Background The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has recently attracted great interest as the first example of a cloned reporter protein that is intrinsically fluorescent. Although successful in some organisms, heterologous expression of GFP has not always been straight forward. In particular, expression of GFP in cells that require incubation temperatures around 37°C has been problematic.Results We have carried out a screen for mutant forms of GFP that fluoresce more intensely than the wild-type protein when expressed in E. coli at 37°C. We have characterized a bright mutant (GFPA) with reduced sensitivity to temperature in both bacteria and yeast, and have shown that the amino acids substituted in GFPA act by preventing temperature-dependent misfolding of the GFP apoprotein. We have shown that the excitation and emission spectra of GFPA can be manipulated by site-directed mutagenesis without disturbing its improved folding characteristics, and have produced a thermostable folding mutant (GFP5) that can be efficiently excited using either long-wavelength ultraviolet or blue light. Expression of GFP5 results in greatly improved levels of fluorescence in both microbial and mammalian cells cultured at 37°C.Conclusions The thermotolerant mutants of GFP greatly improve the sensitivity of the protein as a visible reporter molecule in bacterial, yeast and mammalian cells. The fluorescence spectra of these mutants can be manipulated by further mutagenesis without deleteriously affecting their improved folding characteristics, so it may be possible to engineer a range of spectral variants with improved tolerance to temperature. Such a range of sensitive reporter proteins will greatly improve the prospects for GFP-based applications in cells that require relatively high incubation temperatures.  相似文献   

13.
The green fluorescent protein gene ( gfp ) is a widely used reporter in both animals and plants. Fusions between the plastid rrn promoter or the Escherichia coli trc promoter and the gfp coding region have been delivered to chloroplasts using gold or tungsten microprojectiles, and fluorescence from GFP was visible in individual tobacco chloroplasts and in the abnormally large chloroplasts of the arc 6 mutant of Arabidopsis thaliana 2–4 days after bombardment. The fusion of the gfp coding region to the bacterial trc promoter demonstrated that a bacterial promoter is active in chloroplasts in vivo . GFP was also detectable in amyloplasts of potato tubers and in chromoplasts of marigold petals, carrot roots and pepper fruits 4 days after bombardment. This demonstrates that GFP can be used as a reporter for transient gene expression in chloroplasts and in non-photosynthetic plastids in a range of higher plants.  相似文献   

14.
To accurately interpret the data from fluorescent proteins as reporters of gene activation within living cells, it is important to understand the kinetics of the degradation of the reporter proteins. We examined the degradation kinetics over a large number (>1,000) of single, living cells from a clonal population of NIH3T3 fibroblasts that were stably transfected with a destabilized, enhanced green fluorescent protein (eGFP) reporter driven by the tenascin-C promoter. Data collection and quantification of the fluorescence protein within a statistically significant number of individual cells over long times (14 h) by automated microscopy was facilitated by culturing cells on micropatterned arrays that confined their migration and allowed them to be segmented using phase contrast images. To measure GFP degradation rates unambiguously, protein synthesis was inhibited with cycloheximide. Results from automated live cell microscopy and image analysis indicated a wide range of cell-to-cell variability in the GFP fluorescence within individual cells. Degradation for this reporter was analyzed as a first order rate process with a degradation half-life of 2.8 h. We found that GFP degradation rates were independent of the initial intensity of GFP fluorescence within cells. This result indicates that higher GFP abundance in some cells is likely due to higher rates of gene expression, because it is not due to systematically lower rates of protein degradation. The approach described in this study will assist the quantification and understanding of gene activity within live cells using fluorescent protein reporters.  相似文献   

15.
The nitrate-regulated promoter of narG in Escherichia coli was fused to promoterless ice nucleation (inaZ) and green fluorescent protein (GFP) reporter genes to yield the nitrate-responsive gene fusions in plasmids pNice and pNgfp, respectively. While the promoter of narG is normally nitrate responsive only under anaerobic conditions, the L28H-fnr gene was provided in trans to enable nitrate-dependent expression of these reporter gene fusions even under aerobic conditions in both E. coli DH5alpha and Enterobacter cloacae EcCT501R. E. cloacae and E. coli cells containing the fusion plasmid pNice exhibited more than 100-fold-higher ice nucleation activity in cultures amended with 10 mM sodium nitrate than in nitrate-free media. The GFP fluorescence of E. cloacae cells harboring pNgfp was uniform at a given concentration of nitrate and increased about 1,000-fold when nitrate increased from 0 to 1 mM. Measurable induction of ice nucleation in E. cloacae EcCT501R harboring pNice occurred at nitrate concentrations of as low as 0.1 microM, while GFP fluorescence was detected in cells harboring pNgfp at about 10 microM. In the rhizosphere of wild oat (Avena fatua), the whole-cell bioreporter E.cloacae(pNgfp) or E. cloacae(pNice) expressed significantly higher GFP fluorescence or ice nucleation activity when the plants were grown in natural soils amended with nitrate than in unamended natural soils. Significantly lower nitrate abundance was detected by the E. cloacae(pNgfp) reporter in the A. fatua rhizosphere compared to in bulk soil, indicating plant competition for nitrate. Ice- and GFP-based bacterial sensors thus are useful for estimating nitrate availability in relevant microbial niches in natural environments.  相似文献   

16.
The transfer of genes into primary murine adipocytes using an adenovirus system has been developed. A recombinant adenovirus was constructed (expressing green fluorescent protein [GFP] under the control of the strong cytomegalovirus [CMV] promoter and a luciferase reporter gene under the control of the weak adipocyte promoter keratinocyte lipid-binding protein [KLBP/FABP5]) and incubated with primary adipocytes from C57BL/6J mice. Analysis of infected cells by confocal microscopy detected GFP expression in both the cytoplasm and nucleus of adipocytes with a 64% efficiency of infection. To demonstrate the applicability of this method in the study of gene regulation, adenovirus-infected adipocytes exhibited significant levels of luciferase activity even from a weak promoter. TPA treatment of infected adipocytes increased luciferase activity, consistent with previous studies indicating that the KLBP/FABP5 gene is up-regulated by phorbol esters.These results provide an efficient, convenient, and sensitive method to transiently infect primary murine adipocytes, facilitating protein expression or permitting analysis of reporter gene activity from both viral and endogenous promoters.  相似文献   

17.
18.
Our knowledge of the genetics and molecular basis of the pathogenesis associated with Leptospira, in comparison to those of other bacterial species, is very limited. An improved understanding of pathogenic mechanisms requires reliable genetic tools for functional genetic analysis. Here, we report the expression of gfp and mRFP1 genes under the control of constitutive spirochetal promoters in both saprophytic and pathogenic Leptospira strains. We were able to reliably measure the fluorescence of Leptospira by fluorescence microscopy and a fluorometric microplate reader-based assay. We showed that the expression of the gfp gene had no significant effects on growth in vivo and pathogenicity in L. interrogans. We constructed an expression vector for L. biflexa that contains the lacI repressor, an inducible lac promoter, and gfp as the reporter, demonstrating that the lac system is functional in Leptospira. Green fluorescent protein (GFP) expression was induced by the addition of isopropyl-β-d-thiogalactopyranoside (IPTG) in L. biflexa transformants harboring the expression vector. Finally, we showed that GFP can be used as a reporter to assess promoter activity in different environmental conditions. These results may facilitate further advances for studying the genetics of Leptospira spp.  相似文献   

19.
Phenylacetic acid (PAA) is produced by many bacteria as an antifungal agent and also appears to be an environmentally toxic chemical. The object of this study was to detect PAA using Pseudomonas putida harboring a reporter plasmid that has a PAA-inducible promoter fused to a green fluorescent protein (GFP) gene. Pseudomonas putida KT2440 was used to construct a green fluorescent protein-based reporter fusion using the paaA promoter region to detect the presence of PAA. The reporter strain exhibited a high level of gfp expression in minimal medium containing PAA; however, the level of GFP expression diminished when glucose was added to the medium, whereas other carbon sources, such as succinate and pyruvate, showed no catabolic repression. Interestingly, overexpression of a paaF gene encoding PAACoA ligase minimized catabolic repression. The reporter strain could also successfully detect PAA produced by other PAA-producing bacteria. This GFP-based bioreporter provides a useful tool for detecting bacteria producing PAA.  相似文献   

20.
Use of antisense nucleic acids to modulate expression of particular genes is a promising approach to the therapy of human papillomavirus type 16 (HPV-16)-associated cervical cancer. Understandably, evaluation of the in vivo performance of synthetic antisense oligodeoxynucleotides (AS-ODNs) or ribozymes is of ultimate importance to development of effective antisense tools. Here we report the use of a bacterial reporter system based on the inhibition of fluorescence resonance energy transfer (FRET) to measure the interaction of AS-ODNs with HPV-16 target nt 410-445, using variants of the green fluorescent protein (GFP). An optimal FRET-producing pair was selected with GFP as the donor and yellow fluorescent protein (YFP) as the acceptor molecule. Hybridization of AS-ODNs with a chimaeric mRNA containing the antisense target site flanked by GFP variants resulted in the inhibition of the FRET effect. Use of different linkers suggested that the amino acid content of the linker has no significant effect on FRET effect. Antisense accessibility, tested by RNaseH assays with phosphorothioated target-specific and mutant AS-ODNs, suggested a specific effect on the chimaeric mRNA. FRET inhibition measurements correlated with the presence of truncated proteins confirming true antisense activity over the target. Therefore, FRET inhibition may be used for the direct measurement of AS-ODNs activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号