首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The analysis of the initial-rate kinetics of the liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) in the direction of acetoacetyl-CoA synthesis under product inhibition was performed. 1. Acetyl-CoA acetyltransferase shows a hyperbolic response of reaction velocity to changes in acetyl-CoA concentrations with an apparent Km of 0.237 +/- 0.001 mM. 2. CoASH is a (non-competitive) product inhibitor with a Kis of 22.6 microM and shifts the apparent Km for acetyl-CoA to the physiological concentration of this substrate in mitochondria (S0.5 = 1.12 mM in the presence of 121 microM CoASH). 3. CoASH causes a transformation of the Michaelis-Menten kinetics into initial-rate kinetics with four intermediary plateau regions. 4. The product analogue desulpho-CoA triggers a negative cooperativity as to the dependence of the reaction velocity on the acetyl-CoA concentration. These product effects drastically desensitize the acetyl-CoA acetyltransferase in its reaction velocity response to the acetyl-CoA concentrations and simultaneously extend the substrate dependence range. Thus a control of acetoacetyl-CoA synthesis by the substrate is established over the physiological acetyl-CoA concentration range. We suggest that this control mechanism is the key in establishing the rates of ketogenesis.  相似文献   

2.
The liver mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9), is involved in ketone body synthesis. The enzyme can be chemically modified and inactivated by CoASH and also by CoASH-disulfides provided glutathione is present. The unmodified enzyme shows in its denatured state 7.95 +/- 0.44 sulfhydryl groups per enzyme and in its native state 3.92 +/- 0.34 sulfhydryl groups which react with Ellmann's reagent. The modified enzyme reveals in its native state also 4.07 +/- 0.25 sulfhydryl groups per enzyme, but in its denatured state 9.10 +/- 0.51 sulfhydryl groups could be detected. Approximately four sulfhydryl groups per enzyme, unmodified or modified, can be alkylated by iodoacetamide. These results prove for each subunit the existence of two sulfhydryl groups and suggest the existence of two disulfide bridges. The CoASH modification, which should proceed at one of these disulfide groups, prevents subsequent acetylation of the enzyme and is drastically reduced in the iodoacetamide-alkylated enzyme. In the demodification of the modified enzyme, the CoASH is set free as a mixed disulfide with glutathione.  相似文献   

3.
The potential contribution of thiolimidate formation to the increased kinetic acidity of the alpha-proton of acetyl-CoA in the carbon-carbon bond forming reaction catalyzed by 3-ketoacyl-CoA thiolase (thiolase I) from porcine heart was assessed by chemical modification and isotope exchange experiments. Thiolase is only partially inactivated after the chemical modification of lysine residues by reductive methylation, pyridoxal phosphate, or o-phthaldehyde (specific for vicinal lysine and cysteine). The thiolase-catalyzed formation of acetyl-CoA from acetoacetyl-CoA and CoASH in 18OH2 is not accompanied by the appearance of 18O in the acetyl-CoA product. These experiments effectively rule out participation of thiolimidate formation in the thiolase reaction. Other mechanisms must be employed to facilitate the abstraction of the alpha-proton of acetyl-CoA by thiolase I.  相似文献   

4.
Thiolase I (long chain 3-ketoacyl-CoA-specific) from porcine heart has been characterized kinetically. In the direction of acetoacetyl-CoA cleavage, a variety of thiols including CoASH show the same Vmax at saturating concentrations of acetoacetyl-CoA. At a constant overall velocity of acetoacetyl-CoA disappearance, one of the two acetyl groups from acetoacetyl-CoA will partition between CoASH and 2-mercaptoethanol at increasing 2-mercaptoethanol concentrations. These observations suggest rate-determining formation of an acetyl enzyme intermediate in the direction of acetoacetyl-CoA cleavage. In the direction of acetoacetyl-CoA formation from two molecules of acetyl-CoA, the Vmax of acetoacetyl-CoA formation is identical with the Vmax for an acetyl-CoA in equilibrium CoA isotope exchange reaction and the Vmax for an enzyme-catalyzed acetyl transfer reaction between acetyl-CoA and 2-mercaptoethanol. This suggests that in the direction of acetoacetyl-CoA synthesis, the acetyl transfer half-reaction is rate-limiting. The acetyl intermediate has been isolated and characterized. The equilibrium constant for acetyl enzyme formation from acetyl-CoA and free enzyme is 1 +/- 0.5 X 10(-2). The rate constant for spontaneous hydrolysis of the acetyl enzyme (2.6 X 10(-4) s-1) is a factor of 400 faster than the rate constant for acetyl-CoA hydrolysis under comparable conditions. The acetyl enzyme is thermodynamically and kinetically destabilized compared to acetyl-CoA.  相似文献   

5.
1. Beta-Ketothiolase of Clostridium pasteurianum was purified 130-fold by ammonium sulphate fractionation and by column chromatography using DEAE-Sephadex A-50 and hydroxylapatite. Subjected to gel electrophoresis beta-ketothiolase revealed two distinct bands; by isoelectric focusing two enzymes with isoelectric points at pH 4.5 and 7.6 were separated. As established by sucrose density gradient centrifugation the molecular weight of both enzymes was found to be 158000. 2. The condensation reaction was measured by a coupled optical test using beta-hydroxybutyryl-CoA dehydrogenase as auxiliary enzyme and either acetyl-CoA or free coenzyme A plus acetyl-phosphate and phosphotransacetylase (regenerating system) or acetyl-CoA plus regenerating system as substrates. Beta-Ketothiolase from C. pasteurianum used only 20% of the chemically synthesized acetyl-CoA; the enzyme from Alcaligenes eutrophus H 16 used 25%. When the regenerating system was added the condensation reaction continued. The enzyme from C. pasteurianum was inactivated by free coenzyme A, while the enzyme from A. eutrophus was inhibited. When acetyl-CoA was added as the substrate the initial velocity determination was impeded by the lack of linearity. With acetyl-CoA as the substrate the Km-value was found to be 2.5 mM acetyl-CoA. If free CoASH (or acetyl-CoA) plus regenerating system was added the Km was 0.44 mM (0.42 mM) acetyl-CoA. 3. The beta-ketothiolase activity was measured in the direction of acetoacetyl-CoA cleavage by an optical assay following the decrease of the enol and chelate form of acetoacetyl-CoA by absorption measurement at 305 nm. The activity was maximal at 24 nM MgCl2. The apparent Km values for acetoacetyl-CoA were 0.133 mM and 0.105 mM with 0.065 and 0.016 mM CoASH, respectively. The Km-values as calculated for only the keto form of acetoacetyl-CoA were 0.0471 and 0.0372 mM, respectively. The cleavage reaction was inhibited by high acetoacetyl-CoA concentrations; the inihibition was partially relieved by CoASH. In the range of low concentrations of acetoacetyl-CoA only a slight inhibition by CoASH was observed. The Km for CoASH was found to be 0.0288 and 0.0189 mM with 0.09 and 0.045 mM acetoacetyl-CoA, respectively. High concentrations of CoASH exerted an inhibitory effect on the cleavage reaction. With respect to enzyme kinetics and sensitivity to inhibitors and metabolites the beta-ketothiolases of C. pasteurianum and A. eutrophus were rather similar.  相似文献   

6.
The effects of various mitochondrial coenzymes and metabolities on the activities of 3-oxoacyl-CoA thiolase (EC 2.3.1.16) and acetoacetyl-CoA thiolase (EC 2.3.1.9) from pig heart were investigated with the aim of elucidating the possible regulation of these two enzymes. Of the compounds tested, acetyl-CoA was the most effective inhibitor of both thiolases. However, 3-oxoacyl-CoA thiolase was more severly inhibited by acetyl-CoA than was acetoacetyl-CoA thiolase. 3-Oxoacyl-CoA thiolase was also significantly inhibited by decanoyl-CoA while acetoacetyl-CoA thiolase was inhibited by 3-hydroxybutyryl-CoA as strongly as it was by acetyl-CoA. All other compounds either did not affect the thiolase activities or only at unphysiologically high concentrations. The inhibition of acetoacetyl-CoA thiolase by acetyl-CoA was linear and apparently noncompetitive with respect to CoASH (Ki = 125 microM) whereas that of 3-oxoacyl-CoA thiolase was nonlinear. However at low concentrations of acetyl-CoA the inhibition of 3-oxoacyl-CoA thiolase was linear competitive with respect to CoASH (Ki = 3.9 microM). It is concluded that 3-oxoacyl-CoA thiolase, but not acetoacetyl-CoA thiolase, will be completely inhibited by acetyl-CoA at concentrations of CoASH and acetyl-CoA which are assumed to exist intramitochondrially at state-4 respiration. It is suggested that fatty acid oxidation in heart muscle at sufficiently high concentrations of plasma free fatty acids is controlled via the regulation of 3-oxoacyl-CoA thiolase by the acetyl-CoA/CoASH ratio which is determined by the rate of the citric acid cycle and consequently by the energy demand of the tissue.  相似文献   

7.
Following denaturation of mitochondrial proteins by sodium dodecyl sulfate, a [1-14C]pantothenic acid-derived radioactivity proved to be acid precipitable in the outer membrane, the intermembrane space, the inner membrane and in the matrix of rat liver mitochondria, where it had the highest specific radioactivity of 541 +/- 29 cpm/100 micrograms protein. This tightly and/or covalently bound protein radioactivity could be released by incubation in the presence of dithioerythreitol; it was identified as [14C]coenzyme A by its HPLC retention time, its absorption spectrum and its radioactivity. This acid-stable and thiol-labile coenzyme A-binding apparently refers to specific protein binding sites. With the purified, homogeneous mitochondrial matrix enzymes acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) (EC 2.3.1.9, acetyl-CoA:acetyl-CoA C-acetyltransferase) and 3-oxoacyl-CoA thiolase (EC 2.3.1.16) coenzyme A was found exclusively, e.g., in the modified, partially-active forms A1 und A2 of acetyl-CoA acetyltransferase and not in the unmodified fully-active enzyme. Thus it is evident that this coenzyme A modification is transient. We suggest that coenzyme A-modification is a signal involved in the assembly or the degradation process of distinct mitochondrial matrix proteins.  相似文献   

8.
Cold labile extramitochondrial acetyl-CoA hydrolase (dimeric form) purified from rat liver was activated by various nucleoside triphosphates and inhibited by various nucleoside diphosphates. Activation of acetyl-CoA hydrolase by ATP was inhibited by a low concentration of ADP (Ki congruent to 6.8 microM) or a high concentration of AMP (Ki congruent to 2.3 mM). ADP and AMP were competitive inhibitors of ATP. A Scatchard plot of the binding of ATP to acetyl-CoA hydrolase (dimer) at room temperature gave a value of 25 microM for the dissociation constant with at least 2 binding sites/mol of dimer. Cold-treated monomeric enzyme also associated with ATP-agarose, suggesting that the monomeric form of the enzyme also has a nucleotide binding site(s), probably at least 1 binding site/mol of monomer. Phenylglyoxal or 2,3-butanedione, both of which modify arginyl residues of protein, inactivated acetyl-CoA hydrolase. ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by these reagents, while ADP (an inhibitor) greatly (a substratelike, competitive inhibitor), and CoASH (a product) were less effective. However, addition of ADP plus valeryl-CoA (or CoASH) effectively prevented the inactivation by 2,3-butanedione, but that is not the case for phenylglyoxal. These results suggest that one or more arginyl residues are involved in the nucleotide binding site of extramitochondrial acetyl-CoA hydrolase and that their nucleotide binding sites locate near the substrate binding site.  相似文献   

9.
The in vivo administration of [1-14C]pantothenic acid, which is the precursor of coenzyme A, resulted in the radioactive labelling of several mitochondrial proteins in rat liver. The incorporated radioactivity could be released by glutathione or 2-mercaptoethanol. Two mitochondrial matrix proteins acetyl-CoA acetyltransferase (liver and heart), an enzyme involved in the biosynthesis or degradation of ketone bodies, and 3-oxoacyl-CoA thiolase (liver), a protein participating in fatty acid oxidation were identified as modified proteins. The radioactivity was localized exclusively in forms A1 and A2 indicating that these forms represent the modified states of the acetyl-CoA acetyltransferase protein. Kinetics of incorporation of radioactivity revealed an accumulation of the modified forms. The ratio of specific radioactivities of A2 compared to A1 was 2.41 +/- 0.15 (n = 10). After in vivo labelling with [14C]leucine, the specific radioactivity of acetyl-CoA acetyltransferase depended on the state of the enzyme protein. The unmodified enzyme exhibited a lower specific radioactivity than its modified forms suggesting different turnover rates of these proteins.  相似文献   

10.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

11.
1. The enzymes beta-ketothiolase, acetoacetyl-CoA reductase, acetoacetate-succinate CoA-transferase (;thiophorase') and d(-)-3-hydroxybutyrate dehydrogenase have been partially purified from crude extracts of glucose-grown nitrogen-fixing batch cultures of Azotobacter beijerinckii. The condensation of acetyl-CoA to acetoacetyl-CoA catalysed by beta-ketothiolase is inhibited by CoASH, and the reverse reaction is inhibited by acetoacetyl-CoA. Acetoacetyl-CoA reductase has K(m) for acetoacetyl-CoA of 1.8mum and is inhibited by acetoacetyl-CoA above 10mum. The enzyme utilizes either NADH or NADPH as electron donor. The second enzyme of poly-beta-hydroxybutyrate degradation, d(-)-3-hydroxybutyrate dehydrogenase, is NAD(+)-specific and is inhibited by NADH, pyruvate and alpha-oxoglutarate. CoA transferase is inhibited by acetoacetate, the product of hydroxybutyrate oxidation. In continuous cultures poly-beta-hydroxybutyrate biosynthesis ceased on relaxation of oxygen-limitation and the rates in situ of oxygen consumption and carbon dioxide evolution of such cultures increased without a concomitant increase in glucose uptake. 2. On the basis of these and other findings a cyclic mechanism for the biosynthesis and degradation of poly-beta-hydroxybutyrate is proposed, together with a regulatory scheme suggesting that poly-beta-hydroxybutyrate metabolism is controlled by the redox state of the cell and the availability of CoASH, pyruvate and alpha-oxoglutarate. beta-Ketothiolase plays a key role in the regulatory process. Similarities to the pathways of poly-beta-hydroxybutyrate biosynthesis and degradation in Hydrogenomonas are discussed.  相似文献   

12.
Acetyl-CoA hydrolase, which hydrolyzes acetyl-CoA to acetate and CoASH, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 1080-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, gel filtration and hydroxylapatite. The molecular mass of the native yeast acetyl-CoA hydrolase was estimated to be 64 +/- 5 kDa by gel-filtration chromatography. SDS/PAGE analysis revealed that the denatured molecular mass was 65 +/- 2 kDa and together with that for the native enzyme indicates that yeast acetyl-CoA hydrolase was monomeric. The enzyme had a pH optimum near 8.0 and its pI was approximately 5.8. Several acyl-CoA derivatives of varying chain length were tested as substrates for yeast acetyl-CoA hydrolase. Although acetyl-CoA hydrolase was relatively specific for acetyl-CoA, longer acyl-chain CoAs were also hydrolyzed and were capable of functioning as inhibitors during the hydrolysis of acetyl-CoA. Among a series of divalent cations, Zn2+ was demonstrated to be the most potent inhibitor. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate, a histidine-modifying reagent.  相似文献   

13.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

14.
3-Chloropropionyl coenzyme A (CoA) irreversibly inhibits rat mammary gland fatty acid synthase. Enzyme inactivation proceeds with first-order kinetics. NADPH (150 microM) as well as acetyl-CoA (500 microM) affords protection against inactivation, suggesting that the inhibitor is active site directed. In contrast, malonyl-CoA (500 microM) offers little protection. With chloro [1-14C]propionyl-CoA, stoichiometries of modification that approach one per enzyme protomer (240 kilodaltons) have been measured. When chloropropionyl-[3'-32P]CoA is used for inactivation, modification stoichiometries are less than 10% of the value observed in the 14C labeling experiments, suggesting that acylation of the enzyme occurs. Radioactivity remains associated with the 14C-labeled protein after performic acid oxidation, indicating that another linkage, in addition to the thio ester adduct, is formed during inactivation. Recovery of [( 14C]carboxyethyl)cysteine from digests of the inactivated enzyme indicates that alkylation of an active site cysteine occurs. The cysteamine sulfhydryl of the acyl carrier peptide is clearly not the site of modification. Loss of overall enzyme activity is tightly linked to decreases in the ketoacyl synthase partial reaction. This observation, coupled with the differential protection measured with acetyl-CoA and malonyl-CoA, suggests that the reagent modifies a residue at the active site involved in condensation. While inactivated enzyme shows good ketoacyl reductase activity when S-(acetoacetyl)-N-acetylcysteamine is used as a substrate, only poor activity for this partial reaction is measured when acetoacetyl-CoA is the substrate. This implies that the function of the acyl carrier peptide (ACP) is impaired during the inactivation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lei Y  Pawelek PD  Powlowski J 《Biochemistry》2008,47(26):6870-6882
The meta-cleavage pathway for catechol is a central pathway for the bacterial dissimilation of a wide variety of aromatic compounds, including phenols, methylphenols, naphthalenes, and biphenyls. The last enzyme of the pathway is a bifunctional aldolase/dehydrogenase that converts 4-hydroxy-2-ketovalerate to pyruvate and acetyl-CoA via acetaldehyde. The structure of the NAD (+)/CoASH-dependent aldehyde dehydrogenase subunit is similar to that of glyceraldehyde-3-phosphate dehydrogenase, with a Rossmann fold-based NAD (+) binding site observed in the NAD (+)-enzyme complex [Manjasetty, B. A., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6992-6997]. However, the location of the CoASH binding site was not determined. In this study, hydrogen-deuterium exchange experiments, coupled with peptic digest and mass spectrometry, were used to examine cofactor binding. The pattern of hydrogen-deuterium exchange in the presence of CoASH was almost identical to that observed with NAD (+), consistent with the two cofactors sharing a binding site. This is further supported by the observations that either CoASH or NAD (+) is able to elute the enzyme from an NAD (+) affinity column and that preincubation of the enzyme with NAD (+) protects against inactivation by CoASH. Consistent with these data, models of the CoASH complex generated using AUTODOCK showed that the docked conformation of CoASH can fully occupy the cavity containing the enzyme active site, superimposing with the NAD (+) cofactor observed in the X-ray crystal structure. Although CoASH binding Rossmann folds have been described previously, this is the first reported example of a Rossmann fold that can alternately bind CoASH or NAD (+) cofactors required for enzymatic catalysis.  相似文献   

16.
The acetoacetyl-CoA-thiolase, a product of the acetoacetate degradation operon (ato) was purified to homogeneity as judged by polyacrylamide-gel electrophoresis at pH 4.5, 7.0, and 8.3. The enzyme has a molecular weight of 166,000 and is composed of four identical subunits. The subunit molecular weight is 41,500. Histidine was the sole N-terminal amino acid detected by dansylation. The thiolase contains eight free sulhydryl residues and four intrachain disulfide bonds per mole. The ato thiolase catalyzes the CoA- dependent cleavage of acetoacetyl-CoA and the acetylation of acetyl-CoA to form acetoacetyl-CoA. The maximal velocity in the direction of acetoacetyl-CoA cleavage was 840 nmol min? (enzyme unit)?1 and the maximal velocity in the direction of acetoacetyl CoA formation was 38 nmol min?1 (enzyme unit)?1. Like other thiolases, the ato thiolase was inactivated by sulfhydryl reagents. The enzyme was protected from inactivation by sulfhydryl reagents in the presence of the acyl-CoA substrates, acetyl-CoA and acetoacetyl-CoA; however, no protection was obtained when the enzyme was incubated with the acetyl-CoA analog, acetylaminodesthio-CoA. Consistent with these results was the demonstration of an acetyl-enzyme compound when the thiolase was incubated with [1-14C]acetyl-CoA. The sensitivity of the acetyl-enzyme bond to borohydride reduction and the protection afforded by acyl-CoA substrates against enzyme inactivation by sulfhydryl reagents indicated that acetyl groups are bound to the enzyme by a thiolester bond.  相似文献   

17.
To investigate why Rhizobium sp. (Cicer) strain CC 1192 cells accumulate poly-R-3-hydroxybutyrate in the free-living state but not as bacteroids in nodules on chickpea (Cicer arietinum L.) plants, we have examined the kinetic properties of acetyl coenzyme A (acetyl-CoA) acetyltransferase (also known as acetoacetyl-CoA thiolase and 3-ketothiolase [EC 2.3.1.9]) from both types of cells. The enzyme had a native molecular mass of 180 (plusmn) 4 kDa, and the subunit molecular mass was 44 (plusmn) 1 kDa. The seven amino acids from the N terminus were Lys-Ala-Ser-Ile-Val-Ile-Ala. Thiolysis and condensation activity of the enzyme from free-living CC 1192 cells were optimal at pHs 7.8 and 8.1, respectively. The relationship between substrate concentrations and initial velocity for the thiolysis reaction were hyperbolic and gave K(infm) values for acetoacetyl-CoA and CoA of 42 and 56 (mu)M, respectively. The maximum velocity in the condensation direction was approximately 10% of that of the thiolysis reaction. With highly purified preparations of the enzyme, a value of approximately 1 mM was determined for the apparent K(infm) for acetyl-CoA. However, with partially purified enzyme preparations or when N-ethylmaleimide was included in reaction mixtures the apparent K(infm) for acetyl-CoA was close to 0.3 mM. In the condensation direction, CoA was a potent linear competitive inhibitor with an inhibition constant of 11 (mu)M. The much higher affinity of the enzyme for the product CoA than the substrate acetyl-CoA could have significance in view of metabolic differences between bacteroid and free-living cells of CC 1192. We propose that in free-living CC 1192 cells, the acetyl-CoA/CoA ratio reaches a value that allows condensation activity of acetyl-CoA acetyltransferase, but that in CC 1192 bacteroids, the ratio is poised so that the formation of acetoacetyl-CoA is not favored.  相似文献   

18.
《Insect Biochemistry》1991,21(6):607-613
Characterization of the acetyltransferase (acetyl-CoA: ecdysone 3-acetyltransferase) which catalyzes the conversion of ecdysone into ecdysone 3-acetate was carried out in gastric caecae of day 7 last instar larvae of Schistocerca gregaria. This enzyme is one of the enzymic systems involved in the inactivation of ecdysteroids. The acetyltransferase exhibited a microsomal subcellular localization, an apparent Km for ecdysone of 71 μM, a maximal specific activity of 7.2 nmol/min/mg of protein and was inhibited competitively in the presence of 20-hydroxyecdysone with Ki = 68.8 μM. The enzyme required acetyl-CoA as co-substrate for its activity, the apparent Km for acetyl-CoA being 47.2 μM. Acetic acid could not replace acetyl-CoA as the co-substrate, indicating that the enzyme is an acetyl-CoA: ecdysone acetyltransferase and not a hydrolase. Similarly, esterification of ecdysone was not observed when long-chain fatty acyl-CoA derivatives were substituted as co-substrates. The reaction was linear for 20 min and with protein concentration up to 0.8 mg/ml.The formation of 20-hydroxyecdysone 3-acetate has been demonstrated in the same microsomal fraction and required also acetyl-CoA as co-substrate. The apparent Km of the acetyltransferase for 20-hydroxyecdysone was 53.5 μM, revealing that the enzyme had a somewhat stronger affinity for 20-hydroxyecdysone than for ecdysone.  相似文献   

19.
pH-dependence of carnitine acetyltransferase activity   总被引:15,自引:15,他引:0       下载免费PDF全文
1. The pH-dependence of the kinetic constants of the carnitine acetyltransferase reaction has been investigated with the enzyme from pigeon breast muscle. 2. Michaelis constants for (-)-carnitine and acetyl-(-)-carnitine vary in a similar fashion in the pH range 6.0-9.0. A single ionizing group on the enzyme with an apparent pK7.2 is required in the basic form for binding of these substrates. 3. Binding of CoASH or acetyl-CoA raises the apparent pK of an ionizing group on the enzyme from 7.85 to 8.25. This group is probably not directly involved in forming the enzyme-substrate complex, but its microscopic environment is presumably altered. Another group in either the substrate or the free enzyme, with an apparent pK6.4, is needed in the basic form for optimum binding of CoA substrates. 4. This last group has been unequivocally identified as the 3'-phosphate of CoA, by showing that the K(m) of carnitine acetyltransferase for the substrate acetyl-3'-dephospho-CoA is independent of pH in the range 6.0-7.8. 5. V'(max.), the maximum velocity of the catalysed reaction between acetyl-CoA and (-)-carnitine, is constant between pH6.0 and 8.8. 6. The significance of these results in terms of a previously postulated reaction scheme for this enzyme is discussed.  相似文献   

20.
The substrate specificity of carnitine acetyltransferase   总被引:13,自引:12,他引:1       下载免费PDF全文
1. A study of the acyl group specificity of the carnitine acetyltransferase reaction [acyl-(-)carnitine+CoASH right harpoon over left harpoon (-)-carnitine+acyl-CoA] has been made with the enzyme from pigeon breast muscle. Acyl groups containing up to 10 carbon atoms are transferred and detailed kinetic investigations with a range of acyl-CoA and acylcarnitine substrates are reported. 2. Acyl-CoA derivatives with 12 or more carbon atoms in the acyl group are potent reversible inhibitors of carnitine acetyltransferase, competing with acetyl-CoA. Lauroyl- and myristoyl-CoA show a mixed inhibition with respect to (-)-carnitine, but palmitoyl-CoA competes strictly with this substrate also. Palmitoyl-dl-carnitine shows none of these effects. 3. Ammonium palmitate inhibits the enzyme competitively with respect to (-)-carnitine and non-competitively with respect to acetyl-CoA. 4. It is suggested that a hydrophobic site exists on the carnitine acetyltransferase molecule. The hydrocarbon chain of an acyl-CoA derivative containing eight or more carbon atoms in the acyl group may interact with this, which results in enhanced acyl-CoA binding. Competition occurs between ligands bound to this hydrophobic site and the carnitine binding site. 5. The possible physiological significance of long-chain acyl-CoA inhibition of this enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号