首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phoborhodopsin (pR or sensory rhodopsin II, sRII) and pharaonis phoborhodopsin (ppR or pharaonis sRII, psRII) have a unique absorption maximum (lambda(max)) compared with three other archaeal rhodopsins: lambda(max) of pR and ppR is approx. 500 nm and of others (e.g. bacteriorhodopsin, bR) is 560-590 nm. To determine the residue contributing to the opsin shift from ppR to bR, we constructed various ppR mutants, in which a single residue was substituted for a residue corresponding to that of bR. The residues mutated were those which differ from that of bR and locate within 5 A from the conjugated polyene chain of the chromophore or any methyl group of the polyene chain. The shifts of lambda(max) of all mutants were small, however. We constructed a mutant in which all residues which differ from those of bR in the retinal binding site were simultaneously substituted for those of bR, but the shift was only from 499 to 509 nm. Next, we constructed a mutant in which 10 residues located within 5 A from the polyene as described above were simultaneously substituted. Only 44% of the opsin shift (lambda(max) of 524 nm) from ppR to bR was obtained even when all amino acids around the chromophore were replaced by the same residues as bR. We therefore conclude that the structural factor is more important in accounting for the difference of lambda(max) between ppR and bR rather than amino acid substitutions. The possible structural factors are discussed.  相似文献   

2.
Phoborhodopsin (also called sensory rhodopsin II, sR-II) is a receptor for the negative phototaxis of Halobacterium salinarum (pR), and pharaonis phoborhodopsin (ppR) is the corresponding receptor of Natronobacterium pharaonis. pR and ppR are retinoid proteins and have a photocycle similar to that of bacteriorhodopsin (bR). A major difference between the photocycle of the ion pump bR and the sensor pR or ppR is found in their turnover rates which are much faster for bR. A reason for this difference might be found in the lack of a proton-donating residue to the Schiff base which is formed between the lysine of the opsin and retinal. To reconstruct a bR-like photochemical behavior, we expressed ppR mutants in Escherichia coli in which proton-donating groups have been reintroduced into the cytoplasmic proton channel. In measurement of the photocycle it could be shown that the F86D mutant of ppR (Phe86 was substituted by Asp) showed a faster decay of M-intermediate than the wild-type, which was even accelerated in the F86D/L40T double mutant.  相似文献   

3.
Natronobacterium pharaonis has retinal proteins, one of which is pharaonis phoborhodopsin, abbreviated as ppR (or called pharaonis sensory rhodopsin II, psR-II). This pigment protein functions as a photoreceptor of the negative phototaxis of this bacterium. On photoexcitation ppR undergoes photocycling; the photoexcited state relaxes in the dark and returns to the original state via several intermediates. The photocycle of ppR resembles that of bR except in wavelengths and rate. The cycle of bR is completed in 10 ms while that of ppR takes seconds. The Arrhenius analysis of M-intermediate (ppR(M)) decay which is rate-limiting revealed that the slow decay is due to the large negative activation entropy of ppR. The addition of azide increases the decay rate 300-fold (at pH 7); Arrhenius analysis revealed decreases in the activation energy (activation enthalpy) and a further decrease in the activation entropy.  相似文献   

4.
Shimono K  Furutani Y  Kandori H  Kamo N 《Biochemistry》2002,41(20):6504-6509
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption maximum (500 nm) relative those of other archaeal rhodopsins such as the proton-pump bacteriorhodopsin (BR; 570 nm). Among the 25 amino acids that are within 5 A of the retinal chromophore, 10 are different in BR and ppR, and they are presumed to be crucial in determining the color of their chromophores. However, the spectral red shift in a multiple mutant of ppR, in which the retinal binding site was made similar to that of BR (BR/ppR), was smaller than 40% (lambda(max) = 524 nm) than expected. In the paper presented here, we report on low-temperature Fourier transform infrared (FTIR) spectroscopy of BR/ppR, and compare the infrared spectral changes before and after photoisomerization with those for ppR and BR. The C[bond]C stretch and hydrogen out-of-plane (HOOP) vibrations of BR/ppR were similar to those of BR, suggesting that the surrounding protein moiety of BR/ppR becomes like BR. However, BR/ppR exhibited a unique IR band regarding the hydrogen bond of the protonated Schiff base. It has been known that ppR has a stronger hydrogen bond for the Schiff base than BR as judged from the frequency difference between their C[double bond]NH and C[double bond]ND stretches. We now find that replacement of the 10 amino acids of BR with ppR (BR/ppR) does not weaken the hydrogen bond of the Schiff base. Rather, the hydrogen bond in BR/ppR is stronger than that in the native ppR. We conclude that the principal factor of the smaller than expected opsin shift in BR/ppR is the strong association of the Schiff base with the surrounding counterion complex.  相似文献   

5.
Kandori H  Shimono K  Shichida Y  Kamo N 《Biochemistry》2002,41(14):4554-4559
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption spectrum with a spectral shoulder, which is highly unique for the archaeal rhodopsin family. The primary reaction of ppR is a cis-trans photoisomerization of the retinal chromophore to form the K intermediate, like the well-studied proton pump bacteriorhodopsin (BR). Recent comparative FTIR spectroscopy of the K states in ppR and BR revealed that more extended structural changes take place in ppR than in BR with respect to chromophore distortion and protein structural changes [Kandori, H., Shimono, K., Sudo, Y., Iwamoto, M., Shichida, Y., and Kamo, N. (2001) Biochemistry 40, 9238-9246]. FTIR spectroscopy of the N105D mutant protein reported here assigns the vibrational bands at 1704 and 1700 cm(-1) as C=O stretches of Asn105 in ppR and ppR(K), respectively. A comparative investigation between ppR and BR further reveals that the structure at position 105 in ppR is similar to that of the corresponding position (Asp115) in BR; this observation is supported by the recent X-ray crystallographic structures of ppR [Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001) Science 293, 1499-1503; Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroulla, E., and Navarro, J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 10131-10136]. Nevertheless, structural changes upon photoisomerization at position 105 in ppR are greater than those at position 115 in BR. As a consequence of a unique chromophore-protein interaction in ppR, extended protein structural changes accompanying retinal photoisomerization occur, and these include Asn105 which is approximately 7 A from the retinal chromophore.  相似文献   

6.
Pharaonis phoborhodopsin (ppR; or pharaonis sensory rhodopsin II, psRII) is a photophobic receptor of the halobacterium Natronobacterium pharaonis. Its lambdamax is at 496 nm, but upon acidification in the absence of chloride, lambdamax shifted to 522 nm. This bathochromic shift is thought to be caused by the protonation of Asp75, which corresponds to Asp85 of bacteriorhodopsin (bR). The D75N mutant, in which Asp75 was replaced by Asn, had its lambdamax at approximately 520 nm, supporting this mechanism for the bathochromic shift. A titration of the shift yielded a pKa of 3.5 for Asp75. In the presence of chloride, the spectral shifts were different: with a decrease in pH, a bathochromic shift was first observed, followed by a hypsochromic shift on further acidification. This was interpreted as: the disappearance of a negative charge by the protonation of Asp75 was compensated by the binding of chloride, but it is worthy to note that the binding requires the protonation of another proton-associable group other than Asp75. This is supported by the observation that in the presence of chloride, upon acidification, the lambdamax of D75N even showed a blue shift, showing that the protonation of a proton-associable group (pKa = 1.2) leads to the chloride binding that gives rise to a blue shift.  相似文献   

7.
Sudo Y  Okuda H  Yamabi M  Fukuzaki Y  Mishima M  Kamo N  Kojima C 《Biochemistry》2005,44(16):6144-6152
pHtrII, a pharaonis halobacterial transducer protein, possesses two transmembrane helices and forms a signaling complex with pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, NpSRII) within the halobacterial membrane. This complex transmits a light signal to the sensory system located in the cytoplasm. It has been suggested that the linker region connecting the transmembrane region and the methylation region of pHtrII is important for binding to ppR and subsequent photosignal transduction. In this study, we present evidence to suggest that the linker region itself interacts directly with ppR in addition to the interaction in the membrane region. An in vitro pull-down assay revealed that the linker region bound to ppR, and its dissociation constant (K(D)) was estimated to be approximately 10 microM using isothermal titration calorimetry (ITC). Solution NMR analyses showed that ppR interacted with the linker region of pHtrII (pHtrII(G83)(-)(Q149)) and resulted in the broadening of many peaks, indicating structural changes within this region. These results suggest that the pHtrII linker region interacts directly with ppR. There was no demonstrable interaction between the C-terminal region of ppR (ppR(Gly224)(-)(His247)) and either the linker region (pHtrII(G83)(-)(Q149)) or the transmembrane region (pHtrII(M1)(-)(E114)) of pHtrII. On the basis of the NMR, CD, and photochemical data, we discuss the structural changes and role of the linker region of pHtrII in relation to photosignal transduction.  相似文献   

8.
H Kandori  Y Furutani  K Shimono  Y Shichida  N Kamo 《Biochemistry》2001,40(51):15693-15698
In the Schiff base region of bacteriorhodopsin (BR), a light-driven proton-pump protein, three internal water molecules are involved in a pentagonal cluster structure. These water molecules constitute a hydrogen-bonding network consisting of two positively charged groups, the Schiff base and Arg82, and two negatively charged groups, Asp85 and Asp212. Previous infrared spectroscopy of BR revealed stretching vibrations of such water molecules under strong hydrogen-bonding conditions using spectral differences in D2O and D2(18O) [Kandori and Shichida (2000) J. Am. Chem. Soc. 122, 11745-11746]. The present study extends the infrared analysis to another archaeal rhodopsin, pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin-II, psR-II), involved in the negative phototaxis of Natronobacterium pharaonis. Despite functional differences between ppR and BR, similar spectral features of water bands were observed before and after photoisomerization of the retinal chromophore at 77 K. This implies that the structure and the structural changes of internal water molecules are similar between ppR and BR. Higher stretching frequencies of the bridged water in ppR suggest that the water-containing pentagonal cluster structure is considerably distorted in ppR. These observations are consistent with the crystallographic structures of ppR and BR. The water structure and structural changes upon photoisomerization of ppR are discussed here on the basis of their infrared spectra.  相似文献   

9.
Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. By spectroscopic titration of D193N and D193E mutants, the pK(a) of the Schiff base was evaluated. Asp193 corresponds to Glu204 of bacteriorhodopsin (bR). The pK(a) of the Schiff base (SBH(+)) of D193N was approximately 10.1-10.0 (at XH(+)) and approximately 11.4-11.6 (at X) depending on the protonation state of a certain residue (designated by X) and independent of Cl(-), whereas those of the wild type and D193E were >12. The pK(a) values of XH(+) were approximately 11.8-11.2 at the state of SB, 10.5 at SBH(+) state in the presence of Cl(-), and 9.6 at SBH(+) without Cl(-). These imply the presence of a long-range interaction in the extracellular channel. Asp193 was suggested to be deprotonated in the present dodecyl-maltoside (DDM) solubilized wild-type ppR, which is contrary to Glu204 of bR. In the absence of salts, the irreversible denaturation of D193N (but not the wild type and D193E) occurred via a metastable state, into which the addition of Cl(-) reversed the intact pigment. This suggests that the negative charge at residue 193, which can be substituted by Cl(-), is necessary to maintain the proper conformation in the DDM-solubilized ppR.  相似文献   

10.
Phoborhodopsin (pR) is the fourth retinal pigment of Halobacterium halobium and works as a photoreceptor for the negative phototactic response. A similar pigment was previously found in haloalkaliphilic bacterium (Natronbacterium pharaonis) and also works as the receptor of the negative phototactic response; this pigment is called pharaonis phoborhodopsin (ppR). In this paper, the photocycle of ppR was investigated by means of low-temperature spectrophotometry. The absorption maximum of ppR is located at 498 nm, while that of pR is at 487 nm. The absorption spectra of the two have similar vibrational structures. Irradiation of ppR below -100 degrees C produced a K-like intermediate (ppRK) which was a composite of two components. The original ppR and ppRK were perfectly photoreversible. On warming, ppRK was directly converted to an M-like intermediate without formation of the L-like intermediate. The M-like intermediate was converted to the O-like intermediate at pH 7.2, but the O-like intermediate was not detected at pH 9.0. The O-like intermediate then reverted to the original pigment. On the basis of these findings, the photocycle and the primary photochemical process of ppR are presented.  相似文献   

11.
Shimono K  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(25):7801-7806
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. Recent X-ray crystallographic structures showed that ppR and bacteriorhodopsin (BR), a light-driven proton pump, possess similar molecular environments of the retinal Schiff base. Nevertheless, absorption spectra are different by 70 nm between ppR and BR, suggesting the different chromophore-protein interactions involving the Schiff base region. In this article, we identify frequencies of the Schiff base vibrations in the ppR(K) minus ppR difference spectra by means of low-temperature FTIR spectroscopy of [zeta-(15)N]lysine-labeled ppR. The N-D stretch in D(2)O was found at 2140 and 2091 cm(-1) for ppR, which are shifted to a lower frequency by 32-33 cm(-1) compared to those for BR. This observation indicates the stronger hydrogen bond of the Schiff base in ppR than in BR. The N-D stretch of the Schiff base and O-D stretch of water molecules are located at the different frequencies in ppR, while they appear in the same frequency region in BR [Kandori, H., Belenky, M., and Herzfeld, J. (2002) Biochemistry 41, 6026-6031]. These differences could be correlated with the distorted pentagonal cluster structure in ppR. In contrast, the N-D stretch of ppR(K) was found at 2474 cm(-1), which is close in frequency to that of BR(K). The O-D stretch of Thr79 was also assigned at 2512 and 2474 cm(-1) for ppR and ppR(K), respectively. These frequencies are close to those of BR, suggesting the interaction of Thr79 and Asp75 in ppR is similar to that of Thr89 and Asp85 in BR.  相似文献   

12.
Sudo Y  Furutani Y  Shimono K  Kamo N  Kandori H 《Biochemistry》2003,42(48):14166-14172
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronobacterium pharaonis. It forms a 2:2 complex with its transducer protein, pHtrII, in membranes and transmits light signals through the change in the protein-protein interaction. We previously found that the ppR(K) minus ppR spectrum in D(2)O possesses vibrational bands of ppR at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII [Furutani, Y., Sudo, Y., Kamo, N., and Kandori, H. (2003) Biochemistry 42, 4837-4842]. A D/H-unexchangeable X-H group appears to form a stronger hydrogen bond upon retinal photoisomerization in the ppR-pHtrII complex. This article aims to identify the group by use of various mutant proteins. According to the crystal structure, Tyr-199 of ppR forms a hydrogen bond with Asn-74 of pHtrII in the complex. Nevertheless, the 3479 (-)/3369 (+) cm(-1) bands were preserved in the Y199F mutant, excluding the possibility that the bands are O-H stretches of Tyr-199. On the other hand, Thr-204 and Tyr-174 form a hydrogen bond between the retinal chromophore pocket and the binding surface of the ppR-pHtrII complex. These FTIR measurements revealed that the bands at 3479 (-)/3369 (+) cm(-1) disappeared in the T204A mutant, while being shifted to 3498 (-) and 3474 (+) cm(-1) in the T204S mutant. They appear at 3430 (-)/3402 (+) cm(-1) in the Y174F mutant. From these results, we concluded that the bands at 3479 (-)/3369 (+) cm(-1) originate from the O-H stretch of Thr-204. A stronger hydrogen bond as shown by a large spectral downshift (110 cm(-1)) suggests that the specific hydrogen bonding alteration of Thr-204 takes place upon retinal photoisomerization, which does not occur in the absence of the transducer protein. Thr-204 has been known as an important residue for color tuning and photocycle kinetics in ppR. The results presented here point to an additional important role of Thr-204 in ppR for the interaction with pHtrII. Specific interaction in the complex that involves Thr-204 presumably affects the decay kinetics and binding affinity in the M intermediate.  相似文献   

13.
Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2003,42(17):4837-4842
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psRII) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR activates the cognate transducer protein, pHtrII, upon absorption of light. ppR and pHtrII form a tight 2:2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. In this paper, we studied the influence of pHtrII on the structural changes occurring upon retinal photoisomerization in ppR by means of low-temperature FTIR spectroscopy. We trapped the K intermediate at 77 K and compared the ppR(K) minus ppR spectra in the absence and presence of pHtrII. There are no differences in the X-D stretching vibrations (2700-1900 cm(-1)) caused by presence of pHtrII. This result indicates that the hydrogen-bonding network in the Schiff base region is not altered by interaction with pHtrII, which is consistent with the same absorption spectrum of ppR with or without pHtrII. In contrast, the ppR(K) minus ppR infrared difference spectra are clearly influenced by the presence of pHtrII in amide-I (1680-1640 cm(-1)) and amide-A (3350-3250 cm(-1)) vibrations. The identical spectra for the complex of the unlabeled ppR and (13)C- or (15)N-labeled pHtrII indicate that the observed structural changes for the peptide backbone originate from ppR only and are altered by retinal photoisomerization. The changes do not come from pHtrII, implying that the light signal is not transmitted to pHtrII in ppR(K). In addition, we observed D(2)O-insensitive bands at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII, which presumably originate from an X-H stretch of an amino acid side chain inside the protein.  相似文献   

14.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

15.
Iwamoto M  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(10):2790-2796
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII), a negative phototaxis receptor of Natronobacterium pharaonis, can use light to pump a proton in the absence of its transducer protein. However, the pump activity is much lower than that of the light-driven proton-pump bacteriorhodopsin (BR). ppR's pump activity is known to be increased in a mutant protein, in which Phe86 is replaced with Asp (F86D). Phe86 is the amino acid residue corresponding to Asp96 in BR, and we expect that Asp86 plays an important role in the proton transfer at the highly hydrophobic cytoplasmic domain of the F86D mutant ppR. In this article, we studied protein structural changes and proton transfer reactions during the photocycles of the F86D and F86E mutants in ppR by means of Fourier transform infrared (FTIR) spectroscopy and photoelectrochemical measurements using a tin oxide (SnO2) electrode. FTIR spectra of the unphotolyzed state and the K and M intermediates are very similar among F86D, F86E, and the wild type. Asp86 or Glu86 is protonated in F86D or F86E, respectively, and the pK(a) > 9. During the photocycle, the pK(a) is lowered and deprotonation of Asp86 or Glu86 is observed. Detection of both deprotonation of Asp86 or Glu86 and concomitant reprotonation of the 13-cis chromophore implies the presence of a proton channel between position 86 and the Schiff base. However, the photoelectrochemical measurements revealed proton release presumably from Asp86 or Glu86 to the cytoplasmic aqueous phase in the M state. This indicates that the ppR mutants do not have the BR-like mechanism that conducts a proton uniquely from Asp86 or Glu86 (Asp96 in BR) to the Schiff base, which is possible in BR by stepwise protein structural changes at the cytoplasmic side. In ppR, there is a single open structure at the cytoplasmic side (the M-like structure), which is shown by the lack of the N-like protein structure even in F86D and F86E at alkaline pH. Therefore, it is likely that a proton can be conducted in either direction, the Schiff base or the bulk, in the open M-like structure of F86D and F86E.  相似文献   

16.
Kamada K  Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2006,45(15):4859-4866
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. In membranes, it forms a 2:2 complex with its transducer protein pHtrII, and the association is weakened by 2 orders of magnitude in the M intermediate (ppR(M)). Such a change is believed to correspond to the transfer of the light signal to pHtrII. A previous Fourier transform infrared (FTIR) study observed hydrogen-bonding alteration of Asn74 in pHtrII in the M state, suggesting a light-signaling pathway from the receptor to the transducer [Furutani, Y., Kamada, K., Sudo, Y., Shimono, K., Kamo, N., and Kandori, H. (2005) Biochemistry 44, 2909-2915]. In this paper, we measure temperature dependence of the ppR(M) minus ppR spectra in the absence and presence of pHtrII at 250-293 K. Significant temperature dependence was observed for the amide-I vibrations of helices only for the ppR/pHtrII complex, where the amplitude of amide-I vibrations was reduced at room temperature. (13)C-Labeling of ppR or pHtrII revealed that such spectral changes of helices originate from ppR and not pHtrII. The hydrogen-bonding alteration of Asn74 in pHtrII was temperature-independent, implying that the observed helical structural perturbation in ppR takes place in different region. On the other hand, temperature-dependent structural changes of helices were diminished for the complex of ppR with the G83C and G83F mutants of pHtrII. Gly83 is believed to connect the transmembrane helix and cytosolic linker region in a flexible kink near the membrane surface of pHtrII, and its replacement by Cys or Phe abolishes the photosensory function. The present study provides direct experimental evidence that Gly83 plays an important structural role in the activation processes of the ppR/pHtrII complex. A molecular mechanism of protein structural changes in the ppR/pHtrII complex is discussed on the basis of the present FTIR results.  相似文献   

17.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

18.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

19.
《Biophysical journal》2020,118(3):667-675
Precise quantification of the energetics and interactions that stabilize membrane proteins in a lipid bilayer is a long-sought goal. Toward this end, atomic force microscopy has been used to unfold individual membrane proteins embedded in their native lipid bilayer, typically by retracting the cantilever at a constant velocity. Recently, unfolding intermediates separated by as few as two amino acids were detected using focused-ion-beam-modified ultrashort cantilevers. However, unambiguously discriminating between such closely spaced states remains challenging, in part because any individual unfolding trajectory only occupies a subset of the total number of intermediates. Moreover, structural assignment of these intermediates via worm-like-chain analysis is hindered by brief dwell times compounded with thermal and instrumental noise. To overcome these issues, we moved the cantilever in a sawtooth pattern of 6–12 nm, offset by 0.25–1 nm per cycle, generating a “zigzag” force ramp of alternating positive and negative loading rates. We applied this protocol to the model membrane protein bacteriorhodopsin (bR). In contrast to conventional studies that extract bR’s photoactive retinal along with the first transmembrane helix, we unfolded bR in the presence of its retinal. To do so, we introduced a previously developed enzymatic-cleavage site between helices E and F and pulled from the top of the E helix using a site-specific, covalent attachment. The resulting zigzag unfolding trajectories occupied 40% more states per trajectory and occupied those states for longer times than traditional constant-velocity records. In total, we identified 31 intermediates during the unfolding of five helices of EF-cleaved bR. These included a previously reported, mechanically robust intermediate located between helices C and B that, with our enhanced resolution, is now shown to be two distinct states separated by three amino acids. Interestingly, another intermediate directly interacted with the retinal, an interaction confirmed by removing the retinal.  相似文献   

20.
Pharaonis phoborhodopsin (ppR) is a photosensor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis, an alkalophilic halophile. This protein has seven transmembrane helices into which a chromophore, all-trans retinal, binds to a specific lysine residue (located in helix G)via a protonated Schiff base. Various mutants were engineered to have a single cysteine in the F-helix. In the presence of a bulky fluorescent SH-reagent, MIANS, (2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, illumination decreased the photoreactivity or flash-yield (absorbance deflection immediately after the flash) of the L163C ppR mutant (in which Leu-163 was replaced with Cys) without changing the photocycling rate. The fluorescence of the isolated protein increased with increasing illumination. These observations suggest that during photocycling, the space around Cys-163 in the F-helix might open, permitting reaction with the relatively large molecule. This reaction occurred only at the M-state and not at the O-state. The implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号