首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine beta-lactoglobulin is denatured by increased temperature (heat denaturation) and by decreased temperature (cold-denaturation) in the presence of 4 M urea at pH 2.5. We characterized the structure of the cold-denatured state of beta-lactoglobulin using circular dichroism (CD), small-angle X-ray scattering (SAXS) and heteronuclear nuclear magnetic resonance (NMR). CD and SAXS indicated that the cold-denatured state, in comparison with the highly denatured state induced by urea, is rather compact, retaining some secondary structure, but no tertiary structure. The location of the residual structures in the cold-denatured state and their stability were characterized by 1H/2H exchange combined with heteronuclear NMR. The results indicated that the residues adjacent to the disulfide bond (C106-C119) connecting beta-strands G and H had markedly high protection factors, suggesting the presence of a native-like beta-hairpin stabilized by the disulfide bond. Since this beta-hairpin is conserved between different conformational states, including the kinetic refolding intermediate, it should be of paramount importance for the folding and stability of beta-lactoglobulin. On the other hand, the non-native alpha-helix suggested for the folding intermediate was not detected in the cold-denatured state. The 1H/2H exchange experiments showed that the protection factors of a mixture of the native and cold-denatured states is strongly biased by that of the labile cold-denatured state, consistent with a two-process model of the exchange.  相似文献   

2.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

3.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

4.
Reversible GuHCl denaturation of human stefin A (25 degrees C, pH 8) was monitored by the tyrosine fluorescence, by circular dichroism in the near UV and by circular dichroism in the far UV. In each case a midpoint of 2.8 +/- 0.1 M GuHCl was obtained, demonstrating the cooperativity of the denaturation. Kinetics of the slow folding on diluting the protein from the GuHCl denatured state, was also measured by the three spectroscopic probes (10 degrees C, pH 8). Results conform to a sequential mechanism. Denaturant concentration and temperature dependence of the slow folding were measured by fluorescence. From a linear Arrhenius plot the Ea of 100 +/- 5 kJ/mol was read. 'Double mixing' experiments revealed a slow reaction going on in the unfolded state which influenced the amplitude of the fluorescence changes. 'Double mixing' experiments performed by FPLC have shown that the folding itself, i.e., the formation of a compact state, was not dependent on the time spent under unfolding conditions.  相似文献   

5.
Ando N  Barstow B  Baase WA  Fields A  Matthews BW  Gruner SM 《Biochemistry》2008,47(42):11097-11109
Using small-angle X-ray scattering (SAXS) and tryptophan fluorescence spectroscopy, we have identified multiple compact denatured states of a series of T4 lysozyme mutants that are stabilized by high pressures. Recent studies imply that the mechanism of pressure denaturation is the penetration of water into the protein rather than the transfer of hydrophobic residues into water. To investigate water penetration and the volume change associated with pressure denaturation, we studied the solution behavior of four T4 lysozyme mutants having different cavity volumes at low and neutral pH up to a pressure of 400 MPa (0.1 MPa = 0.9869 atm). At low pH, L99A T4 lysozyme expanded from a compact folded state to a partially unfolded state with a corresponding change in radius of gyration from 17 to 32 A. The volume change upon denaturation correlated well with the total cavity volume, indicating that all of the molecule's major cavities are hydrated with pressure. As a direct comparison to high-pressure crystal structures of L99A T4 lysozyme solved at neutral pH [Collins, M. D., Hummer, G., Quillin, M. L., Matthews, B. W., and Gruner, S. M. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 16668-16671], pressure denaturation of L99A and the structurally similar L99G/E108V mutant was studied at neutral pH. The pressure-denatured state at neutral pH is even more compact than at low pH, and the small volume changes associated with denaturation suggest that the preferential filling of large cavities is responsible for the compactness of the pressure-denatured state. These results confirm that pressure denaturation is characteristically distinct from thermal or chemical denaturation.  相似文献   

6.
The denaturation of bacteriorhodopsin by various organic solvents was studied using absorption, circular dichroism (CD) and fluorescence measurements. Organic solvents with a hydrogen-bonding group caused the release of retinal. The CD measurements showed that the helical structure was maintained even in the denatured state, whereas its tertiary structure was destroyed. The change in fluorescence intensity of tryptophan and fluorescent retinal also confirmed that the tertiary structure was destroyed. Comparison of the denaturation efficiency of various organic solvents showed that the concentration at denaturation was inversely proportional to the partition coefficient of the denaturant. This inverse proportionality clearly indicated that denaturation was determined by the concentration of denaturants which partitioned into the hydrophobic region of the membrane. It was discussed from the experimental results that the tertiary structure of bacteriorhodopsin was stabilized by the hydrogen-bonding networks between side chains of the helices. The results obtained from analysis of the amino acid sequence were also consistent with the hydrogen-bonding mechanism for the formation of the tertiary structure.  相似文献   

7.
T R Sosnick  J Trewhella 《Biochemistry》1992,31(35):8329-8335
Using small-angle X-ray scattering and Fourier transform infrared spectroscopy, we have determined that the thermally denatured state of native ribonuclease A is on average a compact structure having residual secondary structure. Under strongly reducing conditions, the protein further unfolds into a looser structure with larger dimensions but still retains a comparable amount of secondary structure. The dimensions of the thermally and chemically denatured states of the reduced protein are different but both are more compact than is predicted for a random coil of the same length. These results demonstrate that thermal denaturation in ribonuclease A is not a simple two-state transition from a native to a completely disordered random coil state.  相似文献   

8.
High-sensitivity differential scanning calorimetry and CD spectroscopy have been used to probe the structural stability and measure the folding/unfolding thermodynamics of a Pro117-->Gly variant of staphylococcal nuclease. It is shown that at neutral pH the thermal denaturation of this protein is well accounted for by a 2-state mechanism and that the thermally denatured state is a fully hydrated unfolded polypeptide. At pH 3.5, thermal denaturation results in a compact denatured state in which most, if not all, of the helical structure is missing and the beta subdomain apparently remains largely intact. At pH 3.0, no thermal transition is observed and the molecule exists in the compact denatured state within the 0-100 degrees C temperature interval. At high salt concentration and pH 3.5, the thermal unfolding transition exhibits 2 cooperative peaks in the heat capacity function, the first one corresponding to the transition from the native to the intermediate state and the second one to the transition from the intermediate to the unfolded state. As is the case with other proteins, the enthalpy of the intermediate is higher than that of the unfolded state at low temperatures, indicating that, under those conditions, its stabilization must be of an entropic origin. The folding intermediate has been modeled by structural thermodynamic calculations. Structure-based thermodynamic calculations also predict that the most probable intermediate is one in which the beta subdomain is essentially intact and the rest of the molecule unfolded, in agreement with the experimental data. The structural features of the equilibrium intermediate are similar to those of a kinetic intermediate previously characterized by hydrogen exchange and NMR spectroscopy.  相似文献   

9.
Several reports have pointed out the existence of intermediate states (both kinetic and equilibrium intermediate) between the native and the denatured states. The molten globule state, a compact intermediate state in which the secondary structure is formed but the tertiary structure fluctuates considerably, is currently being studied intensively because of its possible implication in the folding process of several proteins. We have examined the thermal stability of horse cytochrome c at low pH between 2.0 and 3.2 and different potassium chloride concentrations by absorbance of the Soret band, far and near-ultraviolet circular dichroism (u.v. c.d.) and tryptophan fluorescence using a multidimensional spectrophotometer. The concentration of potassium chloride ranged from 0 M to 0.5 M. The experimental thermal denaturation curves show that: (1) the helical content of cytochrome c remains stable at higher temperature when the concentration of salt is increased; whereas (2) the extent of ordering of the tertiary structure is weakly dependent on salt concentration; and (3) for cytochrome c, the stabilization of the molten globule state is induced by the binding of anions. Other salts such as NaCl, LiCl, potassium ferricyanide (K3Fe(CN)6) and Na2SO4 may also be used to stabilize the molten globule state. The thermodynamic analysis of the denaturation curves of c.d. at 222 nm and c.d. at 282 nm shows that, whereas a two-state (native and denatured) transition is observed at low-salt concentration, the far and near-u.v. c.d. melting curves of cytochrome c do not coincide with each other at high-salt concentration, and a minimum of three different thermodynamic states (IIb, intermediate or IIc, and denatured) is necessary to achieve a sufficient analysis. The intermediate state (called IIc) is attributed to the molten globule state because of its high secondary structure content and the absence of tertiary structure. Therefore, at low pH, cytochrome c is present in at least four states (native, IIb, IIc and denatured) depending on the salt concentration and temperature. The thermodynamic parameters, i.e. the Gibbs free energy differences (delta G), the enthalpy differences (delta H), the midpoint temperatures (Tm) of the transition (IIb in equilibrium intermediate (IIc in equilibrium denatured) are determined. We also give estimates of the heat capacity differences (delta Cp) from the temperature dependence of the enthalpy differences. The enthalpy change and the heat capacity difference of the IIc in equilibrium denatured transition are non-zero. The number of charges (protons or chloride anions) released upon transitions are determined by analysing the pH and chloride anion concentration dependence of the Gibbs free energy.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4相似文献   

11.
A systematic investigation of the acid-induced unfolding of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase) (GOD) from Aspergillus niger was made using steady-state tryptophan fluorescence, circular dichroism (CD), and ANS (1-anilino 8-naphthalene sulfonic acid) binding. Intrinsic tryptophan fluorescence studies showed a maximally unfolded state at pH 2.6 and the presence of a non-native intermediate in the vicinity of pH 1.4. Flavin adenine dinucleotide (FAD) fluorescence measurements indicate that the bound cofactors are released at low pH. In the pH range studied, near- and far-UV CD spectra show maximal loss of tertiary as well as secondary structure (40%) at pH 2.6 although glucose oxidase at this pH is relatively less denatured as compared to the conformation in 6M GdnHCl. Interestingly, in the vicinity of pH 1.4, glucose oxidase shows a refolded conformation (A-state) with approximately 90% of native secondary structure and native-like near-UV CD spectral features. ANS fluorescence studies, however, show maximal binding of the dye to the protein at pH 1.4, indicating a "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a more compact conformation at low pH. Thermal stability of this state was assessed by ellipticity changes at 222 nm relative to native protein. While native glucose oxidase showed a completely reversible thermal denaturation profile, the state at pH 1.4 showed approximately 50% structural loss and the denatured state appeared to be in a different conformation exhibiting prominent beta-sheet structure (around 85 degrees C) that was not reversible. To summarize; the A-state of GOD exists as a compact folded intermediate with "molten-globule"-like characteristics, viz., native-like secondary structure but with non-native cofactor environment, enhanced hydrophobic surface area and non-cooperative thermal unfolding. That the A-state also possesses significant tertiary structure is an interesting observation made in this study.  相似文献   

12.
Adenylatekinase(EC2.7.4.3)catalyzestheinterconversionofadeninenucleotidesaccordingto:ADP+MgADPAMP+MgATP.Itisubiquitousandparticularlyabundantintissueswithhighenergyturnover.Rabbitmuscleadenylatekinaseisamonomerenzymewithtwostructuredomainscomposedof194aminoa…  相似文献   

13.
Heme-linked proteins, such as cytochromes, are popular subjects for protein folding studies. There is the underlying question of whether the heme affects the structure of the denatured state by cross-linking it and forming other interactions, which would perturb the folding pathway. We have studied wild-type and mutant cytochrome b562 from Escherichia coli, a 106 residue four-alpha-helical bundle. The holo protein apparently refolds with a half-life of 4 micros in its ferrous state. We have analysed the folding of the apo protein using continuous-flow fluorescence as well as stopped-flow fluorescence and CD. The apo protein folded much more slowly with a half-life of 270 micros that was unaffected by the presence of exogenous heme. We examined the nature of the denatured states of both holo and apo proteins by NMR methods over a range of concentrations of guanidine hydrochloride. The starting point for folding of the holo protein in concentrations of denaturant around the denaturation transition was a highly ordered native-like species with heme bound. Fully denatured holo protein at higher concentrations of denaturant consisted of denatured apo protein and free heme. Our results suggest that the very fast folding species of denatured holo protein is in a compact state, whereas the normal folding pathway from fully denatured holo protein consists of the slower folding of the apo protein followed by the binding of heme. These data should be considered in the analysis of folding of heme proteins.  相似文献   

14.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

15.
The changes in beta-lactoglobulin upon cold and heat denaturation were studied by scanning calorimetry, CD, and NMR spectroscopy. It is shown that, in the presence of urea, these processes of beta-lactoglobulin denaturation below and above 308 K are accompanied by different structural and thermodynamic changes. Analysis of the NOE spectra of beta-lactoglobulin shows that changes in the spin diffusion of beta-lactoglobulin after disruption of the unique tertiary structure upon cold denaturation are much more substantial than those upon heat denaturation. In cold denatured beta-lactoglobulin, the network of residual interactions in hydrophobic and hydrophilic regions of the molecules is more extensive than after heat denaturation. This suggests that upon cold- and heat-induced unfolding, the molecule undergoes different structural rearrangements, passing through different denaturation intermediates. From this point of view, cold denaturation can be considered to be a two stage process with a stable intermediate. A similar equilibrium intermediate can be obtained at 35 degrees C in 6.0 M urea solution, where the molecule has no tertiary structure. Cooling or heating of the solution from this temperature leads to unfolding of the intermediate. However, these processes differ in cooperativity, showing noncommensurate sigmoidal-like changes in efficiency of spin diffusion, ellipticity at 222 nm, and partial heat capacity. The disruption with cooling is accompanied by cooperative changes in heat capacity, whereas with heating the heat capacity changes only gradually. Considering the sigmoidal shape of the heat capacity change an extended heat absorption peak, we propose that the intermediate state is stabilized by enthalpic interactions.  相似文献   

16.
Pepsin, a gastric aspartic proteinase, is a zymogen-derived protein that undergoes irreversible alkaline denaturation at pH 6-7. Detailed knowledge of the structure of the alkaline-denatured state is an important step in understanding the mechanism of the formation of the active enzyme. An extensive analysis of the denatured state at pH 8.0 was performed using a variety of techniques including (1)H nuclear magnetic resonance spectroscopy and solution X-ray scattering. This analysis indicates that the denatured state under these conditions has a compact and globular conformation with a substantial amount of secondary and tertiary structures. The data suggest that this partially structured species has a highly folded region and a flexible region. The NMR measurements suggest that the folded region contains His53 and is located at least partly in the N-terminal lobe of the protein. The alkaline-denatured state experiences a further reversible denaturation step at higher pH or on heating; the midpoints of the unfolding transition are pH 11.5 (at 25 degrees C) and 53.1 degrees C (at pH 8.0), respectively. The present findings suggest that the proteolytic processing of pepsinogen has substantially modified the ability of the protein to fold, such that its folding process cannot progress beyond the partially folded intermediate of pepsin.  相似文献   

17.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

18.
The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ∼75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a “molten-globule” like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity.  相似文献   

19.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

20.
We have examined the equilibrium unfolding of Escherichia coli ribonuclease HI (RNase H), a member of a family of enzymes that cleaves RNA from RNA:DNA hybrids. A completely synthetic gene was constructed that expresses a variant of the wild-type sequence with all 3 cysteines replaced with alanine. The resulting recombinant protein is active and folds reversibly. Denaturation studies monitored by circular dichroism and tryptophan fluorescence yield coincident curves that suggest the equilibrium unfolding reaction is a 2-state process. Acid denaturation, however, reveals a cooperative transition at approximately pH 1.8 to a partially folded state. This acid state can be further denatured in a reversible manner by the addition of heat or urea as monitored by either CD or tryptophan fluorescence. Analytical ultracentrifugation studies indicate that the acid state of RNase H is both compact and monomeric. Although compact, the acid state does not resemble the native protein: the acid state displays a near-UV CD spectrum similar to the unfolded state and binds to and enhances the fluorescence of the dye 1-anilinonaphthalene, 8-sulfonate much more than either the native or unfolded states. Therefore, the acid state of E. coli RNase H has the characteristics of a molten globule: it retains a high degree of secondary structure, remains compact, yet does not appear to contain a tightly packed core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号