首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dichlorvos treatment of aflatoxigenic Aspergillus parasiticus SYS-4 (NRRL 2999) or a verscolorin A-accumulating mutant, NIAH-9, resulted in accumulation of versiconol acetate (VOAc) and versiconal hemiacetal acetate (VHA), whereas the production of aflatoxins, versicolorin A (VA), and versiconol (VOH) decreased. In feeding experiments using another non-aflatoxigenic mutant, NIAH-26, aflatoxins were newly produced from each of VHA, VOAc, VOH, versicolorin B (VB) and versicolorin C (VC). In these experiments, aflatoxin production from VHA or VOAc was inhibited by dichlorvos, whereas that from each of VOH, VB and VC was insensitive to dichlorvos. In cell-free experiments using the cytosol fraction of NIAH-26, VHA was converted to VC (or VB) and a substance tentatively identified as versiconal (VHOH). By further addition of NADH or NADPH to the same reaction mixture, VOAc and VOH were also formed together with VC (VB) and VHOH. VOH was produced from VOAc irrespective of nicotinamide adenine nucleotide. Also, the incubation of VOH in the presence of NAD or NADP led to the formation of VC (VB). The production of VC (VB) and VHOH from VHA, and that of VOH from VOAc was inhibited by dichlorvos, whereas the production of VOAc from VHA, and that of VC (VB) from VOH, was insensitive to dichlorvos. These results indicate that a metabolic grid catalysed by dehydrogenase and esterase among VHA, VOAc, VOH and VHOH, and a reaction from VHOH to VC (VB) are involved in aflatoxin biosynthesis. These enzyme activities were also detected when yeast extract peptone medium was used, or when A. oryzae SYS-2 was examined.  相似文献   

2.
In aflatoxin biosynthesis, the pathway for the conversion of 1-hydroxyversicolorone to versiconal hemiacetal acetate (VHA) to versiconal (VHOH) is part of a metabolic grid. In the grid, the steps from VHA to VHOH and from versiconol acetate (VOAc) to versiconol (VOH) may be catalyzed by the same esterase. Several esterase activities are associated with the conversion of VHA to VHOH, but only one esterase gene (estA) is present in the complete aflatoxin gene cluster of Aspergillus parasiticus. We deleted the estA gene from A. parasiticus SRRC 2043, an O-methylsterigmatocystin (OMST)-accumulating strain. The estA-deleted mutants were pigmented and accumulated mainly VHA and versicolorin A (VA). A small amount of VOAc and other downstream aflatoxin intermediates, including VHOH, versicolorin B, and OMST, also were accumulated. In contrast, a VA-accumulating mutant, NIAH-9, accumulated VA exclusively and neither VHA nor VOAc were produced. Addition of the esterase inhibitor dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the transformation recipient strain RHN1, an estA-deleted mutant, or NIAH-9 resulted in the accumulation of only VHA and VOAc. In in vitro enzyme assays, the levels of the esterase activities catalyzing the conversion of VHA to VHOH in the cell extracts of two estA-deleted mutants were decreased to approximately 10% of that seen with RHN1. Similar decreases in the esterase activities catalyzing the conversion of VOAc to VOH were also obtained. Thus, the estA-encoded esterase catalyzes the conversion of both VHA to VHOH and VOAc to VOH during aflatoxin biosynthesis.  相似文献   

3.
(1'R,2'S)-(-)-aflatoxins are produced from racemic versiconal hemiacetal acetate (VHA) through complicated pathways, including a metabolic grid involving VHA, versiconol acetate (VOAc), versiconol, and versiconal (VHOH), and a reaction sequence from VHOH to versicolorin A (VA) through (-)-versicolorin B (VB) [or (+/-)-versicolorin C] (K. Yabe, Y. Ando, and Y. Hamasaki, J. Gen. Microbiol. 137:2469-2475, 1991; K. Yabe, Y. Ando, and T. Hamasaki, Agric. Biol. Chem. 55:1907-1911, 1991). In this study, we examined stereochemical changes of substances formed during the conversion of VHA to VA by using chiral high-performance liquid chromatography. In cell-free experiments using the cytosol of Aspergillus parasiticus NIAH-26, both (2'S)- and (2'R)-VOAc enantiomers were formed at about a 1:2 ratio from racemic VHA in the presence of NADPH and dichlorvos (dimethyl 2,2-dichlorovinylphosphate). Also, the esterase activity catalyzing the conversion of VHA to VHOH or of VOAc to versiconol did not show the stereospecificity for the 2' carbon atom of VHA or VOAc. However, when racemic VHA or racemic VHOH was incubated with the cytosol, (1'R,2'S)-(-)-VB was formed exclusively. Furthermore, only (1'R,2'S)-(-)-VB, and not (1'S,2'R)-(+) antipode, served as a substrate for desaturase activity in the microsome fraction catalyzing the conversion of VB to VA. These results demonstrate that the stereoconfiguration of bis-furan moiety in aflatoxin molecules is determined by the cyclase enzyme catalyzing the reaction from VHOH to VB, and the (1'R,2'S)-(-) configuration was further confirmed by the subsequent desaturase reaction. Remarkably, we found nonenzymatic racemization in both the (2'R)- and (2'S)-VHA enantiomers, and it was dependent upon the temperature and alkaline conditions.  相似文献   

4.
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1'S,5'S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1'R,5'R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1'S,5'S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.  相似文献   

5.
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1′S,5′S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1′R,5′R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1′S,5′S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.  相似文献   

6.
The sequence of steps versiconal hemiacetal acetate (VHA) to versiconal (VL) catalyzed by an esterase and VL to versicolorin B (VB) catalyzed by VL cyclase has been previously demonstrated in cell-free systems fromAspergillus parasiticus. VHA esterase and VL cyclase activities were estimated by determining the amounts of VL and VB after incubation of VHA in cell-free extracts from mycelia that were either synthesizing or not synthesizing aflatoxins. VHA esterase activity but not VL cyclase activity was present in extracts from cells grown in a nonaflatoxin-producing medium. VHA esterase activity was present in extracts from mycelia grown in aflatoxin-producing medium harvested after one to six days of incubation. VL cyclase activity was absent at one day, low at two days, maximal at three to five days, and lower at six days. VL cyclase activity appears in the later part of the growth period which is also the period of aflatoxin biosynthesis. This supports a role for VL cyclase in the aflatoxin biosynthetic pathway.  相似文献   

7.
The pathway oxoaverantin (OAVN) --> averufin (AVR) --> hydroxyversicolorone (HVN) --> versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.  相似文献   

8.
The pathway oxoaverantin (OAVN) → averufin (AVR) → hydroxyversicolorone (HVN) → versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.  相似文献   

9.
The primary product of hydrolysis of versiconal acetate catalyzed by porcine liver esterase and the 35–70% ammonium sulfate fraction from a soluble extract from mycelia of Aspergillus parasiticus was versiconal. Versiconal was stable at neutral pH for several hours and was rapidly converted to versi-colorin C by treatment with 0.4 M HCl. The addition of NADPH to the 35–70% ammonium sulfate fraction resulted in conversion of versiconal acetate to both versiconal and versicolorin C. The conversion of versiconal acetate to versicolorin C in the cell-free system is proposed to involve an esterase and an NADPH-dependent cyclase.  相似文献   

10.
In the aflatoxin biosynthetic pathway, 5'-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2'S,5'S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5'-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   

11.
12.
Two mutant strains of Aspergillus parasiticus, both deficient in aflatoxin production, were used to elucidate the biosynthetic pathway of this mycotoxin. One of the mutants, A. parasiticus ATCC 24551, was capable of accumulating large amounts of averufin, and the other, A. parasiticus 1-11-105 wh-1, accumulated versicolorin A. The averufin producing mutant efficiently converted 14C-labeled versiconal acetate, versicolorin A, and sterigmatocystin into aflatoxin B1 and G1, indicating that averufin preceded these compounds in the aflatoxin biosynthetic pathway. In the presence of dichlorvos (dimethyl 2,2-dichlorovinyl phosphate), a known inhibitor of aflatoxin biosynthesis, the conversion of versicolorin A and sterigmatocystin was unaffected, but the conversion of versiconal acetate was markedly inhibited. The mutant accumulating versicolorin A incorporated 14C-labeled acetate, averufin, and versiconal acetate into versicolorin A. In the presence of dichlorvos, however, the major conversion product was versiconal acetate. This strongly suggested that dichlorvos inhibited the conversion step of versiconal acetate into versicolorin A. This mutant resumed production of aflatoxin B1 if sterigmatocystin was added to the resting cell cultures, indicating that the mutant was blocked at the enzymatic step catalyzing the conversion of versicolorin A into sterigmatocystin, and as a result was incapable of aflatoxin production. The experimental evidence is thus provided for the involvement and interrelationship of three anthraquinones (averufin, versiconal acetate, and versicolorin A) and a xanthone (sterigmatocystin) in aflatoxin biosynthesis. A pathway for the biosynthesis of aflatoxin B1 is proposed to be: acetate →→→ averufin → versiconal acetate → versicolorin A → sterigmatocystin → aflatoxin B1.  相似文献   

13.
Conversion of the aflatoxin biosynthetic intermediate versiconal hemiacetal acetate (VHA) in a cell free extract ofAspergillus parasiticus ATCC 15517 is investigated. The enzymatic reaction is monitored by a method using high performance liquid chromatography (HPLC). The major product of the enzymatic reaction is a water soluble compound not chloroform-extractable at pH 7.5. The product becomes chloroform extractable upon acidification of the reaction medium and is separated and quantitated by reversed-phase HPLC. It is tentatively identified as versiconal hemiacetal alcohol, which is converted to versicolorin C (VC) upon acid treatment.  相似文献   

14.
Versiconal cyclase catalyzes the dehydration of versiconal to versicolorin B or versicolorin C [versicolorin B(C)]. The enzyme was purified from mycelia of Aspergillus parasiticus by DEAE-cellulose, hydroxylapatite, and Mono Q column chromatography. The protein contains two identical subunits of molecular weight 72,000 per molecule of native protein. The pI of the enzyme is 3.95. The pH activity curve had a broad maximum with a peak at 5.5. The Km and Vmax for versiconal at 30 degrees C and pH 6.0 are 3.1 microM and 0.15 mumol min-1mg-1, respectively. Most of the formation of versicolorin B(C) in the cell is attributed to the action of versiconal cyclase.  相似文献   

15.
Two versiconal hemiacetal acetate (VHA) reductase activities (designated I and II), which catalyzed the reaction from VHA to versiconol acetate (VOAc) during aflatoxin biosynthesis, were purified to apparent homogeneity from the cytosol fraction of the mycelia of Aspergillus parasiticus mutant NIAH-26 through the following chromatography steps: first, fractionation with ammonium sulfate and then fractionation in succession with phenyl-Sepharose, DEAE-Sepharose, Sephacryl S-300, hydroxylapatite, and Matrex gel Green A chromatography. VHA reductase I and VHA reductase II were completely separated at the end of the DEAE-Sepharose step. The apparent molecular masses of reductase I and reductase II were estimated (by gel filtration) to be approximately 390 kDa; their denaturing molecular masses were 39- and 40-kDa, respectively (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Their pI values were 6.6 and 6.0, respectively (as determined by isoelectric focusing), and the optimal pH values were 8.0 and 9.0, respectively, although both enzymes exhibited a broad optimal pH range of between 7.5 and 9.0. The Km values of reductase I and reductase II for VHA were 35.4 and 25.4 μM, respectively. On the other hand, in the cell-free experiments involving either VHA reductase fraction and high-performance liquid chromatography, both (2′S)- and (2′R)-VOAc enantiomers were formed from racemic VHA and more of the 2′R isomer than the 2′S isomer was produced, indicating that the VHA reductase fractions have very similar stereospecificities to the substrate.  相似文献   

16.
In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   

17.
A relatively stable enzyme system that converts versiconal hemiacetal acetate to versicolorin A was isolated from the soluble fraction of the homogenized cells of Aspergillus parasiticus ATCC 15517. The cell-free preparation did not require oxygen or oxidized nicotinamide adenine dinucleotide phosphate for activity, nor did it require dithiothreitol, polyclar (polyvinyl pyrrolidone), or glycerol for stabilization of activity. It was susceptible to inhibition by dichlorvos and cysteine. Isotope tracer studies revealed involvement of several intermediates in the conversion of versiconal hemiacetal acetate to versicolorin A. These findings confirm the biogenetic relationship of versiconal hemiacetal acetate and versicolorin A, and they confirm that the bisfuran ring structure in aflatoxins and related fungal metabolites is derived from the hemiacetal structure of versiconal hemiacetal acetate.  相似文献   

18.
Cell-free extracts of fungal mycelia of two aflatoxin non-producing isolates of Aspergillus parasiticus (SRRC 163 and SRRC 2043) were utilized for the study of enzyme activities involved in the latter stages of aflatoxin biosynthesis. The post-microsomal fractions (105,000 x g supernatant) of both SRRC 163 and SRRC 2043 were able to convert sterigmatocystin (ST) into O-methylsterigmatocystin (OMST); whereas the microsomal (105,000 x g pellet) preparation of only SRRC 163 was able to convert OMST into aflatoxin B1 (AFB1). S-Adenosylmethionine (SAM) was the primary substrate for the ST to OMST (methyltransferase) enzymatic conversion; [3H]OMST of specific activity 0.93 Ci/mmol was obtained in a reaction containing the [3H]SAM substrate (specific activity 1 Ci/mmol). After the terminal enzymatic conversion of OMST into AFB1, none of the radiolabel of the methyl group from OMST was found in AFB1. It is postulated that the methylation of ST may be required for subsequent enzymatic oxidation of OMST to aflatoxin B1.  相似文献   

19.
A new blocked mutant of Aspergillus parasiticus produces no detectable aflatoxin B1, but accumulates several polyhydroxyanthraquinones. One of these pigments was identified as averantin. This is the first report of its formation by A. parasiticus. Radiotracer studies with [14C]averantin showed that 15.3% of label from averantin was incorporated into aflatoxin B1. This incorporation was blocked by dichlorvos. With radiotracers and other mutants, averantin was placed after norsolorinic acid and before averufin in the biosynthetic pathway in which the general steps are norsolorinic acid leads to averantin leads to averufin leads to versiconal hemiacetal acetate leads to versicolorin A leads to sterigmatocystin leads to aflatoxin B1.  相似文献   

20.
Disruption of the aflatoxin biosynthesis cluster gene aflY (hypA) gave Aspergillus parasiticus transformants that accumulated versicolorin A. This gene is predicted to encode the Baeyer-Villiger oxidase necessary for formation of the xanthone ring of the aflatoxin precursor demethylsterigmatocystin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号