首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sun Y  Dai M  Hao H  Wang Y  Huang L  Almofti YA  Liu Z  Yuan Z 《PloS one》2011,6(8):e23471
Active efflux pump is a primary fluoroquinolone resistant mechanism of clinical isolates of Salmonella enterica serovar Typhimurium. RamA is an essential element in producing multidrug resistant (MDR) S. enterica serovar Typhimurium. The aim of the present study was to elucidate the roles of RamA on the development of ciprofloxacin, the first choice for the treatment of salmonellosis, resistance in S. enterica serovar Typhimurium. Spontaneous mutants were selected via several passages of S. enterica serovar Typhimurium CVCC541 susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin (CIP). Accumulation of ciprofloxacin was tested by the modified fluorometric method. The expression levels of MDR efflux pumps were determined by real time RT-PCR. In ST and its spontaneous mutants, the ramA gene was inactivated by insertion of the kan gene and compensated on a recombinant plasmid pGEXΦ(gst-ramA). The mutant prevention concentration (MPC) and mutant frequencies of ciprofloxacin against ST and a spontaneous mutant in the presence, absence and overexpression of RamA were tested. Four spontaneous mutants (SI1-SI4) were obtained. The SI1 (CIP MICs, 0.1 mg/L) without any target site mutation in its quinolone resistant determining regions (QRDRs) and SI3 (CIP MICs, 16 mg/L) harboring the Ser83→Phe mutation in its QRDR of GyrA strains exhibited reduced susceptibility and resistance to multidrugs, respectively. In SI1, RamA was the main factor that controlled the susceptibility to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB. In SI3, RamA played predominant role in ciprofloxacin resistance via increasing the expression level of acrAB. Likewise, the deficiency of RamA decreased the MPCs and mutant frequencies of ST and SI2 to ciprofloxacin. In conclusion, the expression of RamA promoted the development of ciprofloxacin resistant mutants of S. enterica serovar Typhimurium. The inhibition of RamA could decrease the appearance of the ciprofloxacin resistant mutants.  相似文献   

2.
Bunny K  Liu J  Roth J 《Journal of bacteriology》2002,184(22):6235-6249
The LexA protein of Escherichia coli represses the damage-inducible SOS regulon, which includes genes for repair of DNA. Surprisingly, lexA null mutations in Salmonella enterica are lethal even with a sulA mutation, which corrects lexA lethality in E. coli. Nine suppressors of lethality isolated in a sulA mutant of S. enterica had lost the Fels-2 prophage, and seven of these (which grew better) had also lost the Gifsy-1 and Gifsy-2 prophages. All three phage genomes included a homologue of the tum gene of coliphage 186, which encodes a LexA-repressed cI antirepressor. The tum homologue of Fels-2 was responsible for lexA lethality and had a LexA-repressed promoter. This basis of lexA lethality was unexpected because the four prophages of S. enterica LT2 are not strongly UV inducible and do not sensitize strains to UV killing. In S. enterica, lexA(Ind(-)) mutants have the same phenotypes as their E. coli counterparts. Although lexA null mutants express their error-prone DinB polymerase constitutively, they are not mutators in either S. enterica or E. coli.  相似文献   

3.
Quinolone resistance in Salmonella spp. is usually attributed to both active efflux and mutations leading to modification of the target enzymes DNA gyrase and topoisomerase IV. Here, we investigated the presence of mutations in the efflux regulatory genes of fluoroquinolone- and multidrug-resistant mutants of Salmonella enterica serovar Typhimurium (S. Typhimurium) selected in vitro with enrofloxacin that both carried a mutation in the target gene gyrA and overproduced the AcrAB efflux pump. No mutations were detected in the global regulatory loci marRAB and soxRS for the four strains studied. A mutation in acrR, the local repressor of acrAB, was found for two ciprofloxacin-resistant selected-mutants, leading to duplication of amino acids Ile75 and Glu76. Complementation experiments with wild-type acrR showed that the mutation identified in acrR partially contributed to the increase in resistance levels to several unrelated antibiotics. The acrR mutation also contributed to acrAB overexpression as shown by RT-PCR. Thus, this study underlines the role of an acrR mutation, in addition to the mutation in gyrA, in the fluoroquinolone and multidrug resistance phenotype of S. Typhimurium mutants, through overexpression of acrAB.  相似文献   

4.
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.  相似文献   

5.
Fluoroquinolones are broad-spectrum antimicrobials highly effective in the treatment of a wide variety of clinical infections. Salmonella gastroenteritis is usually only treated with fluoroquinolones when the patient is elderly or immunocompromised. Fluoroquinolones are also used for the treatment of systemic Salmonella infection or for long-term salmonella carriage. Resistance to quinolones is commonly mediated by point mutations within the topoisomerase genes gyrA and parC. Pyrosequencing technology is a DNA sequencing method using 'sequencing by synthesis' and is suitable for the rapid detection of single nucleotide polymorphisms (SNPs). One hundred and ten Salmonella enterica isolates, representing 18 different serotypes, were used in this study. One hundred and four isolates had ciprofloxacin MICs of 0.25-32 microg/mL; the remaining six were ciprofloxacin-sensitive (ciprofloxacin MIC相似文献   

6.
Exposure of Salmonella enterica to sodium cholate, sodium deoxycholate, sodium chenodeoxycholate, sodium glycocholate, sodium taurocholate, or sodium glycochenodeoxycholate induces the SOS response, indicating that the DNA-damaging activity of bile resides in bile salts. Bile increases the frequency of GC --> AT transitions and induces the expression of genes belonging to the OxyR and SoxRS regulons, suggesting that bile salts may cause oxidative DNA damage. S. enterica mutants lacking both exonuclease III (XthA) and endonuclease IV (Nfo) are bile sensitive, indicating that S. enterica requires base excision repair (BER) to overcome DNA damage caused by bile salts. Bile resistance also requires DinB polymerase, suggesting the need of SOS-associated translesion DNA synthesis. Certain recombination functions are also required for bile resistance, and a key factor is the RecBCD enzyme. The extreme bile sensitivity of RecB-, RecC-, and RecA- RecD- mutants provides evidence that bile-induced damage may impair DNA replication.  相似文献   

7.
The Bacillus subtilis mrp (multiple resistance and pH) operon supports Na(+) and alkali resistance via an Na(+)/H(+) antiport, as well as cholate efflux and resistance. Among the individual mutants with nonpolar mutations in each of the seven mrp genes, only the mrpF mutant exhibited cholate sensitivity and a cholate efflux defect that were complemented by expression of the deleted gene in trans. Expression of mrpF in the mrp null (VKN1) strain also restored cholate transport and increased Na(+) efflux, indicating that MrpF does not require even low levels of other mrp gene expression for its own function. In contrast to MrpF, MrpA function had earlier seemed to depend upon at least modest expression of other mrp genes, i.e., mrpA restored Na(+) resistance and efflux to strain VK6 (a polar mrpA mutant which expresses low levels of mrpB to -G) but not to the null strain VKN1. In a wild-type background, each nonpolar mutation in individual mrp genes caused profound Na(+) sensitivity at both pH 7.0 and 8.3. The mrpA and mrpD mutants were particularly sensitive to alkaline pH even without added Na(+). While transport assays in membrane vesicles from selected strains indicated that MrpA-dependent antiport can occur by a secondary, proton motive force-dependent mechanism, the requirement for multiple mrp gene products suggests that there are features of energization, function, or stabilization that differ from typical secondary membrane transporters. Northern analyses indicated regulatory relationships among mrp genes as well. All the mrp mutants, especially the mrpA, -B, -D, -E, and -G mutants, had elevated levels of mrp RNA relative to the wild type. Expression of an upstream gene, maeN, that encodes an Na(+)/malate symporter, was coordinately regulated with mrp, although it is not part of the operon.  相似文献   

8.
Insertion of factor MudJ in the intergenic region between divergent genes yrfF and yrfE, at centisome 76 in the genome of Salmonella enterica serovar Typhimurium LT2, confers the characteristics recently described for mucM mutants, i.e. mucoidy and resistance to mecillinam. Cloning of the intergenic region plus either the yrfF or the yrfE gene in a multicopy plasmid showed that only the plasmid carrying the yrfF gene complemented mucM mutants, thus suggesting that mucM mutations are in fact yrfF mutations. A null yrfF mutation obtained by insertion of a kanamycin cassette into the yrfF open reading frame (yrfF28::Kan) produced abortive colonies when transduced to a wild-type strain but was normally accepted by rcsB, rcsC or yojN strains. Neither mutations preventing synthesis of the capsular exopolysaccharide colanic acid (cps, galE) nor rcsA mutations, which reduce expression of cps genes, conferred tolerance to the lethal yrfF28::Kan mutation. Spontaneous suppressor mutations arose very frequently in abortive yrfF28::Kan colonies, and all of them affected either rcsC, yojN, or rcsB genes. Thus, the lethal effect caused by inactivation of gene yrfF appears to be mediated by a function that is dependent on the rcsC-yojN-rcsB phosphorelay system but does not involve synthesis of colanic acid.  相似文献   

9.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

10.
Two regulons, soxRS and marRAB, are associated with resistance to quinolones or multiple antibiotic in Salmonella enterica serovar Typhimurium. These regulons are activated by nitric oxide and redox-cycling drugs, such as paraquat and cause on activation of the acrAB-encoded efflux pump. In this study, we investigated the effect of nitric oxide (NO) alone and in combination with ofloxacin, ciprofloxacin, and pefloxacin against S. typhimurium clinical isolates and mutant strains in vitro. We did not observe synergistic effect against clinical isolates and SH5014 (parent strain of acr mutant), while we found synergistic effect against PP120 (soxRS mutant) and SH7616 (an acr mutant) S. typhimurium for all quinolones. Our results suggest that the efficiencies of some antibiotics, including ofloxacin, ciprofloxacin, and pefloxacin are decreased via activation of soxRS and marRAB regulons by NO in S. enterica serovar Typhimurium. Further studies are warranted to establish the interaction of NO with the genes of Salmonella and, with multiple antibiotic resistance.  相似文献   

11.
We investigated the mechanism responsible for bile susceptibility in three deoxycholate-sensitive (DCs) strains of Salmonella enterica subspecies enterica serovar Pullorum isolated in 1958 in Japan. Of the genes encoding the AcrAB-TolC efflux system, the expression of acrB mRNA was 10-fold lower in the DCs strains than in a deoxycholate-resistant (DCr) strain, whereas those of the acrA and tolC genes were two-fold lower. These results suggested that low expression of acrB was strongly correlated with bile susceptibility in the DCs strains. In addition, the increase in tolC expression levels was not detected in the DCr mutants derived from the DCs strains, suggesting that difference in the expression levels of tolC is not associated with bile susceptibility.  相似文献   

12.
Reactive oxygen intermediates (ROIs) play a pivotal role in the hypersensitive response (HR) in disease resistance. NADPH oxidase is a major source of ROI; however, the mechanisms of its regulation are unclear. Rice spl mutants spontaneously form lesions which resemble those occurring during the HR, suggesting that the mutations affect regulation of the HR. We found that spl2, spl7 and spl11 mutant cells accumulated increased amounts of H(2)O(2) in response to rice blast fungal elicitor. Increased accumulation of ROIs was suppressed by inhibition of NADPH oxidase in the spl cells, and was also observed in the ozone-exposed spl plants. These mutants have sufficient activities of ROI-scavenging enzymes compared with the wild type. In addition, spl7 mutant cells accumulated higher amounts of H(2)O(2) when treated with calyculin A (CA), an inhibitor of protein phosphatase. Furthermore, spl2 mutant plants exhibited accelerated accumulation of H(2)O(2) and increased rates of cell death in response to wounding. These results suggest that the spl2, spl7 and spl11 mutants are defective in the regulation of NADPH oxidase, and the spl7 mutation may give rise to enhancement of the signaling pathway which protein dephosphorylation controls, while the spl2 mutation affects both the pathogen-induced and wound-induced signaling pathways.  相似文献   

13.
14.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

15.
Copper ion is an essential micronutrient but it is also extremely cytotoxic when it exists in excess. Our studies have shown that Salmonella enterica serovar Typhimurium can survive potentially lethal copper exposures by the way of copper efflux system. A copper ion inducible gene was identified in virulent S. typhimurium by using the technique of MudJ (Km, lac)-directed lacZYA operon fusions. A copper ion inducible strain LF153 (cuiD::MudJ) has been identified. The cuiD mutant exhibits a copper sensitive phenotype but possesses normal resistance to other metal ions, and lost DMP oxidase activity. Therefore, we suggest that cuiD is an important gene for copper homeostasis and the copper resistance response. The copper sensitive phenotype was complemented by pYL3.0 carrying cuiD+. Sequence analysis showed cuiD contains 1,614 bp encoding a 536 amino acid with a 27 amino acid signal peptide and a 509 amino acid residues comprising the mature peptide. The CuiD shows 81% homology to YacK, a putative multicopper oxidases which extrudes copper in Escherichia coli. This ORF contains four conserved regions that contain 12 copper ligands (types 1, 2, and 3) present in various copper homeostasis responsible proteins. The H2O2 sensitive phenotype of the cuiD mutant indicates that cuiD may be involved in oxidative stress response.  相似文献   

16.
A panel of isogenic Salmonella enterica serovar Typhimurium strains that vary only in the length of the O antigen was constructed through complementation of a wzz double mutant (displaying unregulated O-antigen length) with one of two homologous (wzzST and wzzfepE) or three heterologous (wzzO139 of Vibrio cholerae and wzzSF and wzzpHS-2 of Shigella flexneri) wzz genes. Each gene was functional in the S. enterica serovar Typhimurium host and specified production of O-antigen polymers with lengths typical of those synthesized by the donor bacteria (ranging from 2 to >100 O-antigen repeat units). By use of this panel of strains, it was found that O-antigen length influences invasion/uptake by macrophage cells; this is the first time this has been shown with Salmonella. O-antigen length was confirmed to be related to complement resistance, with a minimum protective length of >4 and <15 repeat units. O antigen of 16 to 35 repeat units was found to activate complement more efficiently than other lengths, but this was unrelated to complement resistance. No evidence was found to suggest that modifying the length of the O-antigen polymer affected expression of the O1, O4, or O5 antigenic factors.  相似文献   

17.
Nod factor inhibition of reactive oxygen efflux in a host legume   总被引:1,自引:0,他引:1  
Shaw SL  Long SR 《Plant physiology》2003,132(4):2196-2204
Hydrogen peroxide (H(2)O(2)) efflux was measured from Medicago truncatula root segments exposed to purified Nod factor and to poly-GalUA (PGA) heptamers. Nod factor, at concentrations > 100 pM, reduced H(2)O(2) efflux rates to 60% of baseline levels beginning 20 to 30 min after exposure, whereas the PGA elicitor, at > 75 nM, caused a rapid increase in H(2)O(2) efflux to >200% of baseline rates. Pretreatment of plants with Nod factor alters the effect of PGA by limiting the maximum H(2)O(2) efflux rate to 125% of that observed for untreated plants. Two Nod factor-related compounds showed no ability to modulate peroxide efflux, and tomato (Lycopersicon esculentum), a nonlegume, showed no response to 1 nM Nod factor. Seven M. truncatula mutants, lacking the ability to make nodules, were tested for Nod factor effects on H(2)O(2) efflux. The nfp mutant was blocked for suppression of peroxide efflux, whereas the dmi1 and dmi2 mutants, previously shown to be blocked for early Nod factor responses, showed a wild-type peroxide efflux modulation. These data demonstrate that exposure to Nod factor suppresses the activity of the reactive oxygen-generating system used for plant defense responses.  相似文献   

18.
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.  相似文献   

19.
20.
Five mutants of apolipoprotein A-I (apoA-I), apoA-I(Delta63-73), apoA-I(Delta140-150), apoA-I(63-73@140-150), apoA-I(R149V), and apoA-I(P143A) were compared with human plasma apoA-I for their ability to promote cholesterol and phospholipid efflux from HepG2 cells. A significantly lower capacity to promote cholesterol and phospholipid efflux was observed with lipid-free apoA-I(Delta63-73), while mutations apoA-I(Delta140-150) and apoA-I(P143A) affected phospholipid efflux only. When added as apoA-I/palmitoyloleoyl phosphatidylcholine (POPC) complex, mutations apoA-I(63-73@140-150) and apoA-I(Delta140-150) affected cholesterol efflux. None of the mutations affected alpha-helicity of the lipid-free mutants or their self-association. Five natural mutations of apoA-I, apoA-I(A95D), apoA-I (Y100H), apoA-I(E110K), apoA-I(V156E), and apoA-I (H162Q) were studied for their ability to bind lipids and promote cholesterol efflux. None of the mutations affected lipid-binding properties, cholesterol efflux, or alpha-helicity of lipid-free mutants. Two mutations affected self-association of apoA-I: apoA-I(A95D) was more prone to self-association, while apoA-I(E100H) did not self-associate. The following conclusions could be made from the combined data: i) regions 210-243 and 63-100 are the lipid-binding sites of apoA-I and are also required for the efflux of lipids to lipid-free apoA-I, suggesting that initial lipidation of apoA-I is rate limiting in efflux; ii) in addition to the lipid-binding regions, the central region is important for cholesterol efflux to lipidated apoA-I, suggesting its possible involvement in interaction with cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号