首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K. Raschke  A. Resemann 《Planta》1986,168(4):546-558
Parts of attached leaves of the sclerophyllous shrub Arbutus unedo were subjected to simulated mediterranean days. Gas exchange was recorded in order to recognize the causes of the midday depression in CO2 assimilation. Depressions could be induced in part of a leaf: they were local responses. The CO2-saturation curves of photosynthesis, determined during the morning and afternoon maxima of CO2 assimilation and during the minimum at midday, established that depressions in CO2 assimilation were in one-half of the investigated cases totally caused by reversible reductions in the photosynthetic capacity of the leaves, and in the other half almost totally caused by such reductions. An analysis of 37 daily courses showed that morning reductions and afternoon recoveries of stomatal conductance and rate of photosynthesis occurred simultaneously and in proportion to each other, with the result that the partial pressure of CO2 in the intercellular spaces remained more or less constant. Midday depressions occurred also in detached leaves standing in water. The initiation of a midday depression was not caused by a circadian rhythm, nor was high quantum flux or high temperature a requirement. There was no correlation between the rate of water loss from the leaves, or the amount of water lost, with the degree of reduction of the photosynthetic capacity. However, depressions occurred if an apparent threshold in the water-vapor pressure difference between leaf and air was exceeded. This critical value varied between about 20 and 30 mbar, depending on the leaf investigated. The dominating role of humidity in the induction of the midday depression was further demonstrated when leaf temperature was held constant and the vapor-pressure difference was made to follow the pattern of the mediterranean day: depressions occurred. Depressions however were hardly noticeable when the water-vapor pressure difference was held constant and leaf temperature was allowed to vary. In another set of experiments, leaves were subjected to variations in temperature and humidity independent of the time of the day, under otherwise constant conditions. Photosynthetic capacity and stomatal conductance proved to be almost insensitive to changes in temperature (in a range extending from 20 to 37° C) as long as the water vapor-pressure difference was held constant. If it was not, the rate of photosynthesis began to decline with increasing temperature after a threshold water-vapor pressure difference was exceeded. The position of the resulting apparent temperature optimum of photosynthesis depended on the humidity of the air. We suggest that the ability of A. unedo to respond to a dry atmosphere with a reversible reduction of its photosynthetic capacity (by a still unknown mechanism) is the result of a co-evolution with the development of a strong stomatal sensitivity to changes in humidity.  相似文献   

2.
Summary From field gas-exchange measurements on Arbutus unedo growing in Portugal, parameter values necessary to apply an analytical, physiologicallybased model of C 3 photosynthesis were obtained. The model successfully simulated measured diurnal photosynthetic responses in Arbutus during periods without water stress, under both natural and CO2-saturating conditions. The model was used to analyze those factors limiting primary productivity during each of the experimental days. Due to a large investment in ribulose bisphosphate (RuBP) regeneration capacity, irradiance was rarely limiting, even during cloudy periods, but the limitation imposed by stomatal conductance was quite large, averaging over 30%. The fact that experimental leaves were maintained in a horizontal position is at least partially responsible for these results. Possible other reasons for this apparent excess of RuBP regeneration capacity visa-vis RuBP carboxylase-oxygenase concentration are discussed.  相似文献   

3.
Metabolism of abscisic acid (ABA) was studied after wilting and upon recovery from water stress in individual, detached leaves of Phaseolus vulgaris L. (red kidney bean). Loss of turgor was correlated with accumulation of ABA and its metabolites, resulting in a 10-fold increase in the level of phaseic acid (PA) and a doubling of the level of conjugated ABA. The level of conjugated ABA in turgid leaves was no higher than that of the free acid. These results indicate that accumulation of ABA in wilted leaves resulted from a stimulation of ABA synthesis, rather than from a release from a conjugated form or from inhibition of the metabolism of ABA. The rate of synthesis of ABA was at its maximum between 2.5 and 5 h after turgor was lost, and slackened there-after. In wilted leaves, the rate of conversion of ABA to PA climbed steadly until it matched the rate of synthesis, after about 7.5 h. Upon rehydration of sections from wilted leaves, the rate of synthesis of ABA dropped close to zero within about 3 h, while the rate of conversion to PA accelerated. Formation of PA was two to four times faster than in sections maintained in the wilted condition; it reached a rate sufficient to convert almost one-half of the ABA present in the tissue to PA within 1 h. In contrast, the alternate route of metabolism of ABA, synthesis of conjugated ABA, was not stimulated by rehydration. The role of turgor in the stimulation of the conversion of ABA to PA was investigated. When leaves that had been wilted for 5 h were rehydrated to different degrees, the amount of ABA which disappeared, or that of PA which accumulated during the next 3 h, did not depend linearly on the water potential of the rehydrated leaf. Rather, re-establishment of the slightest positive turgor was sufficient to result in maximum stimulation of conversion of ABA to PA.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - PA phaseic acid - leaf leaf water potential - osmotic pressure  相似文献   

4.
The relationship between the gas-exchange characteristics of attached leaves of Phaseolus vulgaris L. and the pool sizes of several carbon-reduction-cycle intermediates was examined. After determining the rate of CO2 assimilation at known intercellular CO2 pressure, O2 pressure and light, the leaf was rapidly killed (<0.1 s) and the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), fructose-1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate were measured. In 210 mbar O2, photosynthesis appeared RuBP-saturated at low CO2 pressure and RuBP-limited at high CO2 pressure. In 21 mbar (2%) O2, the level of RuBP always appeared saturating. Very high levels of PGA and other phosphate-containing compounds were found with some conditions, especially under low oxygen.Abbreviations and symbols C1 intercellular CO2 pressure - PGA 3-phosphoglyceric acid - RuBP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase  相似文献   

5.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

6.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   

7.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

8.
George J. P. Murphy 《Planta》1984,160(3):250-255
Metabolism of R,S-[2-14C]abscisic acid (ABA) was studied in detached leaves of six wheat (Triticum aestivum) cultivars, using non-stressed leaves or leaves water stressed by desiccation to 90% of their original fresh weight. The rate constant of ABA metabolism was similar in nonstressed leaves of all cultivars. Water stress resulted in significantly lower rate constants in two cultivars which accumulated high levels of ABA when stressed, the constants decreasing by a factor of about 1.5. Rate constants for the remainder of the cultivars were not significantly different from those for the non-stressed controls. It was calculated that if decreased metabolism was the mechanism for the accumulation of ABA following water stress the rate constants of metabolism would have to be reduced by a factor of between 25 and 70. The results therefore support the hypothesis that enhanced synthesis rather than reduced degradation is the main process by which ABA levels are elevated following experimentally induced water stress. There were differences between the six cultivars in the products of ABA metabolism. Over the time period studied, oxidation to phaseic acid and dihydrophaseic acid as well as to other unidentified metabolites appeared to be the predominant pathway of ABA metabolism, rather than conjugation to ABA glucose ester and other more polar compounds.Abbreviations ABA abscisic acid - ABAGE abscisic-acid glucose ester - DPA dihydrophaseic acid - PA phaseic acid  相似文献   

9.
Roots of Acer pseudoplatanus seedlings grown in liquid nutrient medium contained much lower levels of both free and bound abscisic acid than did leaves. The levels of free abscisic acid were similar in young expanding and of mature leaves, but lower in older senscing leaves. Growing plants under long days or short days did not influence the levels of free and bound abscisic acid in leaves. However, under both long days and short days, levels of bound abscisic acid were lower at the end of the dark period than 8 h later during the light period. Phaseic acid was also detected during the light period but never at the end of the dark period.Abbreviations ABA abscisic acid - PA phaseic acid - SD short day - GLC gas-liquid chromatography - LD long day  相似文献   

10.
R. S. Barros  S. J. Neill 《Planta》1986,168(4):530-535
Aseptically cultured lateral buds of Salix viminalis L. collected from field-grown trees exhibited a clear periodicity in their ability to respond to exogenous abscisic acid (ABA). Buds were kept unopened by ABA only when the plants were dormant or entering dormancy. Short days alone did not induce bud dormancy in potted plants but ABA treatment following exposure to an 8-h photoperiod prevented bud opening although ABA treatment of buds from long-day plants did not. Naturally dormant buds taken from shoots of field-grown trees and cultured in the presence of ABA opened following a chilling treatment. In no cases were the induction and breaking of dormancy and response to ABA correlated with endogenous ABA levels in the buds.Abbreviations ABA abscisic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography - LD long day - MeABA methyl ABA - PAR photosynthetically active radiation - SD short day  相似文献   

11.
M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   

12.
Klaus Raschke  Rainer Hedrich 《Planta》1985,163(1):105-118
(±)-Abscisic acid (ABA) at 10-5 M was added to the transpiration stream of leaves of 16 species (C3 and C4, monocotyledons and dicotyledons). Stomatal responses followed one of three patterns: i) stomata that were wide and insensitive to CO2 initially, closed partially and became sensitive to CO2; ii) for stomata that were sensitive to CO2 before the application of ABA, the range of highest sensitivity to CO2 shifted from high to low intercellular partial pressures of CO2, for instance in leaves of Zea mays from 170–350 to 70–140 bar; iii) when stomata responded strongly to ABA, their conductance was reduced to a small fraction of the initial conductance, and sensitivity to CO2 was lost. The photosynthetic apparatus was affected by applications of ABA to various degrees, from no response at all (in agreement with several previous reports on the absence of effects of ABA on photosynthesis) through a temporary decrease of its activity to a lasting reduction. Saturation curves of photosynthesis with respect to the partial pressure of CO2 in the intercellular spaces indicated that application of ABA could produce three phenomena: i) a reduction of the initial slope of the saturation curve (which indicates a diminished carboxylation efficiency); ii) a reduction of the level of the CO2-saturated rate of assimilation (which indicates a reduction of the ribulose-1,5-bisphosphate regeneration capacity); and iii) an increase of the CO2 compensation point. Photosynthesis of isolated mesophyll cells was not affected by ABA treatments. Responses of the stomatal and photosynthetic apparatus were usually synchronous and often proportional to each other, with the result that the partial pressure of CO2 in the intercellular spaces frequently remained constant in spite of large changes in conductance and assimilation rate. Guard cells and the photosynthetic apparatus were able to recover from effects of ABA applications while the ABA supply continued. Recovery was usually partial, in the case of the photosynthetic apparatus occasionally complete. Abscisic acid did not cause stomatal closure or decreases in the rate of photosynthesis when it was applied during a phase of stomatal opening and induction of photosynthesis that followed a transition from darkness to light.Abbreviations and symbols A rate of CO2 assimilation - ABA (±)-abscisic acid - c a partial pressure of CO2 in the ambient air or in the gas supplied to the leaf chambers - c i partial pressure of CO2 in the intercellular spaces of a leaf - e a partial pressure of H2O in the air - g conductance for water vapor - J quantum flux - T 1 leaf temperature  相似文献   

13.
A. Chanson  P. E. Pilet 《Planta》1982,154(6):556-561
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.Abbreviations ABA abscisic acid - 3,3-DGA 3,3-dimethyl-glutaric acid - DPA dihydrophaseic acid - PA phaseic acid - GCMS gas chromatography-mass spectrometry  相似文献   

14.
15.
Polypodium vulgare L., a widely distributed fern, is water-stress tolerant. Under controlled dehydration conditions (20% mannitol, 9 h) without and with abscisic acid (ABA) pretreatment (2 mg l−1, 24 h), dehydration tolerance and regenerative, potential of common polypody rhizomes was investigated. We demonstrated the positive effect of ABA on changes in dehydrated rhizome metabolism. ABA pretreatment reduced electrolyte leakage from cells: it has also a role in regulating sucrose accumulation and thus, osmotic adjustment. Our findings confirm that P. vulgare rhizomes are well adapted to stress conditions through maintaining of ability to bud formation by dehydrated and rehydrated rhizomes.  相似文献   

16.
Levels of abscisis acid (ABA) were determined in isolated guard cell (GCP) and mesophyll cell (MCP) protoplasts of Vicia faba L. in relation to water stress. Incubation of GCP and MCP in 0.4 M or 0.8 M mannitol resulted in an average increase in the level of free abscisic acid (ABA) in the cells of 34% (GCP) and 38% (MCP) within 15–60 min. It is concluded that guard cell protoplasts form ABA in response to osmotic stress.Abbreviations ABA abscisic acid - BHT butylated hydroxytoluene - GCP guard cell protoplasts - MCP mesophyll cell protoplasts - MES [2-(N-morpholino)-ethanesulfonic acid] - TLC thin layer chromatography Part 20 in the series, Use of Immunoassay in Plant Science  相似文献   

17.
The appearance of transverse sections of maize leaves indicates the existence of two airspace systems serving the mesophyll, one connected to the stomata of the upper epidermis and the other to the stomata of the lower surface, with few or no connections between the two. This study tests the hypothesis that the air-space systems of the upper and lower mesophyll are separated by a defined barrier of measurable conductance. A mathematical procedure, based on this hypothesis, is developed for the quantitative separation of the contributions made by the upper and lower halves of the mesophyll to carbon assimilation using gasexchange data. Serial paradermal sections and three-dimensional scanning-electron-microscope images confirmed the hypothesis that there were few connections between the two air-systems. Simultaneous measurements of nitrous-oxide diffusion across the leaf and of transpiration from the two surfaces showed that the internal conductance was about 15% of the maximum observed stomatal conductance. This demonstrates that the poor air-space connections, indicated by microscopy, represent a substantial barrier to gas diffusion. By measuring the CO2 and water-vapour fluxes from each surface independently, the intercellular CO2 concentration (c i) of each internal air-space system was determined and the flux between them calculated. This allowed correction of the apparent CO2 uptake at each surface to derive the true CO2 uptake by the mesophyll cells of the upper and lower halves of the leaf. This approach was used to analyse the contribution of the upper and lower mesophyll to CO2 uptake by the leaf as a whole in response to varying light levels incident on the upper leaf surface. This showed that the upper mesophyll was light-saturated by a photon flux of approx. 1000 mol·m-2·s-1 (i.e. about one-half of full sunlight). The lower mesophyll was not fully saturated by photon fluxes of nearly double full sunlight. At low photon fluxes the c i of the upper mesophyll was significantly less than that of the lower mesophyll, generating a significant upward flux of CO2. At light levels equivalent to full sunlight, and above, c i did not differ significantly between the two air space systems. The physiological importance of the separation of the air-space systems of the upper and lower mesophyll to gas exchange is discussed.Abbreviations and symbols A net leaf CO2 uptake rate - A upper app. and A lower app. net rates of CO2 uptake across the upper and lower surfaces - A upper and A lower derived net rates of CO2 uptake by the upper and lower mesophyll - A upward net flux of CO2 from the lower to upper mesophyll - c a, c a, upper and c a, lower the CO2 concentrations in the air around the leaf above the upper surface and below the lower surface - c N2O the concentration of N2O in the air around the leaf - c i, c i, upper and c i, lower the mesophyll intercellular CO2 concentration of the whole leaf, the upper mesophyll and the lower mesophyll - g i leaf internal conductance to CO2 - g s, g s, lower and g s, upper the stomatal conductance of the whole leaf, the lower surface and the upper surface - g the total conductance across the leaf - Q the photosynthetically active photon flux density  相似文献   

18.
During the midday depression of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and -carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.Abbreviations and symbols ci concentration of CO2 within the leaf - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - Fv variable fluorescence emission - PFD photon flux density (400–700 nm) - PSI, II photosystem I, II - TL leaf temperature  相似文献   

19.
Leaves ofNerium oleander L. plants, which had been previously kept in a shaded glasshouse for at least two months, were fed 1 mM dithiothreitol (DTT) through their petioles, either for 12h in darkness (overnight) or for 2h in low light (28 μmol photons·m−2·s−1), in each case followed by a 3-h exposure to high light (1260 μmol photons·m−2·s−1). During exposure to high light, violaxanthin became converted to zeaxanthin in control leaves, to which water had been fed, whereas zeaxanthin did not accumulate in leaves treated with DTT. Total carbon gain was not reduced by DTT during the photoinhibitory treatment. Exposure to high light led to a decrease in the photochemical efficiency of photosystem II, measured as the ratio of variable over maximum fluorescence emission,F v/F M, at both 298 K and 77K. The decrease was much more pronounced in the presence of DTT, mainly owing to a sustained increase in the instantaneous fluorescence,F o. By contrast, in the control leaves,F o determined immediately after the high-light treatment showed a transient decrease below theF o value obtained before the onset of the photoinhibitory treatment (i.e. after 12 h dark adaptation), followed by a rapid return (within seconds) to this original level ofF o during the following recovery period in darkness. Incubation of leaves with DTT led to large, sustained decreases in the photon-use efficiency of photosynthetic O2 evolution by bright light, whilst the capacity of photosynthetic O2 evolution at light and CO2 saturation was less affected. In the control leaves, only small reductions in the photon yield and in the photosynthetic capacity were observed. These findings are consistent with previous suggestions that zeaxanthin, formed in the xanthophyll cycle by de-epoxidation of violaxanthin, is involved in protecting the photosynthetic apparatus against the adverse effects of excessive light.  相似文献   

20.
It is well known that endogenous abscisic acid (ABA) levels increase rapidly in response to drought stress and that this induces stomatal closure. In Arabidopsis thaliana, ABA levels increased rapidly in the leaves and roots when intact wild-type whole plants were exposed to drought stress. However, if the leaves and roots were separated and exposed to drought independently, the ABA level increased only in the leaves. These results suggest that, under our experimental conditions, ABA is synthesized mainly in the leaves in response to drought stress and that some of the ABA accumulated in the leaves is transported to the roots. Tracer experiments using isotope-labeled ABA indicate that the movement of ABA from leaves to roots is activated by water deficit in the roots. We also demonstrate that the endogenous ABA level in the leaves increased only when the leaves themselves were exposed to drought stress, suggesting that leaves play a major role in the production of ABA in response to acute water shortage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号