首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

2.
The studies herein describe a B cell hybridoma-derived, low m.w. (less than 1000 Da), hydrophilic mediator denoted B cell activator (BCA). BCA stimulates B cell expression of IgE-specific FcR (Fc epsilon RII or CD23) in a manner similar to IL-4. However, BCA can be readily distinguished from IL-4 because it does not 1) enhance B cell Ia expression; 2) bind 11B11 anti-IL-4 mAb; or 3) elicit superinduction of Fc epsilon RII expression or IgE production in cultures of LPS-activated B cells. Moreover, BCA is considerably more mitogenic than IL-4 for LPS-activated B cells and, in contrast to IL-4, lacks mitogenicity for anti-mu-activated B cells. BCA can enhance IgG2b and IgG3 production by LPS-activated B cells, responses that are suppressed by IL-4. BCA alone did not stimulate IgE and IgG1 production by LPS-activated B cells, but exerted synergistic activity when combined with IL-4 in stimulating secretion of these antibody isotypes. Finally, secondary Ag-driven IgG1, IgE, and IgA antibody responses can be stimulated by BCA in vitro. Thus, BCA appears to be a novel mediator with broad B cell activation properties.  相似文献   

3.
Disparate models for the development of peripheral B cells may reflect significant heterogeneity in recirculating long-lived B cells that have not been previously accounted for. We show in this study that the murine recirculating B cell pool contains two distinct, long-lived, posttransitional, follicular B cell populations. Follicular Type I IgM(low) B cells require Ag-derived and Btk-dependent signals for their development and make up the majority of cells in the recirculating follicular B cell pool. Follicular type II B cells do not require Btk- or Notch-2-derived signals, make up about a third of the long-lived recirculating B cell pool, and can develop in the absence of Ag. These two follicular populations exhibit differences in basal tyrosine phosphorylation and in BCR-induced proliferation, suggesting that they may represent functionally distinct populations of long-lived recirculating B cells.  相似文献   

4.
CD8+ cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, B cells and target cell limitation have all been suggested to play a role in the control of SIV and HIV-1 infection. However, previous research typically studied each population in isolation leaving the magnitude, relative importance and in vivo relevance of each effect unclear. Here we quantify the relative importance of CTLs, NK cells, B cells and target cell limitation in controlling acute SIV infection in rhesus macaques. Using three different methods, we find that the availability of target cells and CD8+ T cells are important predictors of viral load dynamics. If CTL are assumed to mediate this anti-viral effect via a lytic mechanism then we estimate that CTL killing is responsible for approximately 40% of productively infected cell death, the remaining cell death being attributable to intrinsic, immune (CD8+ T cell, NK cell, B cell) -independent mechanisms. Furthermore, we find that NK cells have little impact on the death rate of infected CD4+ cells and that their net impact is to increase viral load. We hypothesize that NK cells play a detrimental role in SIV infection, possibly by increasing T cell activation.  相似文献   

5.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

6.
Interleukin 4 (IL-4) induces the expression of membrane Thy-1 on the vast majority of lipopolysaccharide (LPS)-stimulated normal murine B cells in vitro. This induction is inhibited by interferon-gamma (IFN-gamma). IL-4 and IFN-gamma are required late in culture to effect maximal induction and inhibition of Thy-1 expression by LPS- or LPS + IL-4-stimulated B cells, respectively. IFN-gamma suppresses IL-4-induced Thy-1 expression by inhibiting the induction of steady-state levels of Thy-1-specific mRNA. Three distinct CD4+ Th2 clones, through their release of IL-4, induce B cells to express high levels of Thy-1, by 24 hr, in striking contrast to the 3 days required to induce Thy-1 expression after stimulation with LPS and IL-4. This induction is abrogated by the addition of IFN-gamma. B cells stimulated with three distinct Th1 clones (IFN-gamma- and IL-2-producing) exhibit a modest, non-IL-4-dependent, expression of Thy-1. In contrast to intrinsic expression of Thy-1 by Th2-stimulated B cells. Thy-1 expressed by Th1-stimulated B cells is acquired, having the allotype specificity of the stimulating T cell.  相似文献   

7.
The relationship of the T cell influences involved in human B cell activation and differentiation into immunoglobulin-secreting cells (ISC) was investigated. T cell supernatants (T supt) generated by stimulating T cells with phytohemagglutinin and phorbol myristate acetate contained activities capable of augmenting DNA synthesis and the growth of mitogen-stimulated B cells and supporting the differentiation of ISC. To examine the role of T supt in B cell activation and the progression through the cell cycle, T cell- and monocyte-depleted B cells were stimulated with formalinized Cowan I strain Staphylococcus aureus (SA), and the percentages of cells in G1, S, and G2 + M were determined by acridine orange staining and analysis. In all experiments, a similar percentage of cells entered G1 during the first 24 to 36 hr of culture when stimulated with SA or SA + T supt. Similar results were seen when B cell activation was analyzed by acquisition of a number of other markers of cell activation. Analysis of cell cycle progression with mithramycin staining of cellular DNA in the presence or absence of vinblastine to arrest mitosis indicated that SA-activated B cells were able to complete S and divide in the absence of T supt. Although an effect of T supt on the progression of B cells through the S phase was evident during the first cell cycle, the major effect only became apparent after the first round of cell division. Although T supt was not necessary for initial B cell activation, T cell influences were absolutely necessary for the differentiation of ISC. T supt did not need to be present during the initial 24 to 36 hr of incubation to permit subsequent generation of ISC. However, when T supt was present initially, an increased number of ISC were produced. Hydroxyurea elimination of cells traversing the G1-S interphase indicated that reception of the differentiation signal occurred before the S phase, but that the generation of ISC required subsequent DNA synthesis and/or cell division. Although precursors of ISC were entirely contained within the population triggered to divide by SA alone, there was no preferential expansion of such precursors as a result of SA stimulation. These results indicate that T cell signals are not absolutely necessary for initial B cell activation and progression through the first cell cycle, although T cell factors promote DNA synthesis by some activated B cells. In contrast, differentiation into ISC is completely dependent on T cell influences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In this study we show that BCR affinity and subset identity make unique contributions to anergy. Analysis of anti-Smith (Sm) B cells of different affinities indicates that increasing affinity improves anergy's effectiveness while paradoxically increasing the likelihood of marginal zone (MZ) and B-1 B cell differentiation rather than just follicular (FO) B cell differentiation. Subset identity in turn determines the affinity threshold and mechanism of anergy. Subset-specific affinity thresholds for anergy induction allow discordant regulation of low-affinity anti-Sm FO and MZ B cells and could account for the higher frequency of autoreactive MZ B cells than that of FO B cells in normal mice. The mechanism of anergy changes during differentiation and differs between subsets. This is strikingly illustrated by the observation that blockade of BCR-mediated activation of FO and MZ B cells occurs at different levels in the signaling cascade. Thus, attributes unique to B cells of each subset integrate with signals from the BCR to determine the effectiveness, affinity threshold, and mechanism of anergy.  相似文献   

9.
Despite the fact that the effect of B deficiency on cell metabolism has been studied extensively the mechanism by which B deficiency causes cell death has not been determined. Several authors have hypothesized that B deficiency leads to oxidative burst and hence cell death, though this has not been demonstrated experimentally. In the present work we utilize rose cell (Rosa damascena Mill cv Gloide de Guilan) suspension culture, maintained at the stationary growth phase to determine the effect of B deficiency on cell viability and a number of physiological and biochemical parameters including H2O2 production, phenolic leakage, pH of the medium, B concentration and biomass. B deficiency resulted in the death of some cells as early as 24 h following B deprivation, and continued rapidly in the following days. In B deficient cells a small oxidative burst (indicated by the production of H2O2) was observed coincident with first cell death and increasing thereafter. Increasing amounts of phenolics were observed in the culture medium of the deficient treatment indicating loss of membrane integrity, however results suggest this increase is a secondary consequence of cell death. The effect of B deficiency on the oxidative burst, together with the effect on cell viability is discussed.  相似文献   

10.
Xu H  Yan Y  Williams MS  Carey GB  Yang J  Li H  Zhang GX  Rostami A 《PloS one》2010,5(11):e13780
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.  相似文献   

11.
The low-affinity FcR for IgG FcgammaRIIB suppresses the development of IgG autoantibodies and autoimmune disease in normal individuals, but how this effect is mediated is incompletely understood. To investigate this issue, we created FcgammaRIIB-deficient versions of two previously described targeted BCR-transgenic lines of mice that contain follicular B cells with specificity for the hapten arsonate, but with different levels of antinuclear autoantigen reactivity. The primary development and tolerance of both types of B cells were unaltered by the absence of FcgammaRIIB. Moreover, the reduced p-azophenylarsonate-driven germinal center and memory responses characteristic of the highly autoreactive clonotype were not reversed by an intrinsic FcgammaRIIB deficiency. In contrast, the p-azophenylarsonate-driven primary Ab-forming cell responses of both clonotypes were equivalently increased by such a deficiency. In total, our data do not support the idea that FcgammaRIIB directly participates in the action of primary or germinal center tolerance checkpoints. In contrast, this receptor apparently contributes to the prevention of autoimmunity by suppressing the production of autoreactive IgGs from B cells that have breached tolerance checkpoints and entered the Ab-forming cell pathway due to spontaneous, or cross-reactive, Ag-mediated activation.  相似文献   

12.
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger.  相似文献   

13.
14.
The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein kinases, Ras signaling pathways, phospholipase C-gamma2 activation, and calcium mobilization. The identification of a Syk-deficient mouse IIA1.6/A20 B cell line provided us the opportunity to investigate Syk-mediated signaling in mouse. Surprisingly, phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinases were activated upon BCR cross-linking in these Syk-deficient mouse B cells, whereas, as expected from results obtained in chicken B cells, phospholipase C-gamma2 activation and calcium mobilization were impaired as well as the NF-kappaB pathway. These results indicate that BCR signaling is not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. Thus, B lymphocyte activation may be initiated by Syk-dependent and Syk-independent signaling cascades.  相似文献   

15.
Rap1 is a small GTPase that belongs to Ras superfamily. This ubiquitously expressed GTPase is a key regulator of integrin functions. Rap1 exists in two isoforms: Rap1a and Rap1b. Although Rap1 has been extensively studied, its isoform-specific functions in B cells have not been elucidated. In this study, using gene knockout mice, we show that Rap1b is the dominant isoform in B cells. Lack of Rap1b significantly reduced the absolute number of B220(+)IgM(-) pro/pre-B cells and B220(+)IgM(+) immature B cells in bone marrow. In vitro culture of bone marrow-derived Rap1b(-/-) pro/pre-B cells with IL-7 showed similar proliferation levels but reduced adhesion to stromal cell line compared with wild type. Rap1b(-/-) mice displayed reduced splenic marginal zone (MZ) B cells, and increased newly forming B cells, whereas the number of follicular B cells was normal. Functionally, Rap1b(-/-) mice showed reduced T-dependent but normal T-independent humoral responses. B cells from Rap1b(-/-) mice showed reduced migration to SDF-1, CXCL13 and in vivo homing to lymph nodes. MZ B cells showed reduced sphingosine-1-phosphate-induced migration and adhesion to ICAM-1. However, absence of Rap1b did not affect splenic B cell proliferation, BCR-mediated activation of Erk1/2, p38 MAPKs, and AKT. Thus, Rap1b is crucial for early B cell development, MZ B cell homeostasis and T-dependent humoral immunity.  相似文献   

16.
Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.  相似文献   

17.
An EBNA- human B lymphoma cell line, B104, was established. B104 cells express IgD as well as IgM on their surface, which is thought to be a basic characteristic of mature B cells. The growth of B104 cells was inhibited by treatment with a panel of anti-IgM antibodies. Cell cycle analyses revealed that the transition of B104 cells from the G2/M to the G0/G1 phase of the cell cycle was markedly inhibited by treatment with anti-IgM antibodies. Progression of B104 cells to the M phase of the cell cycle was found to be suppressed in the presence of anti-IgM antibodies. In contrast, both the entrance of G0/G1 phase cells into the S phase and the progression of S phase cells to the G2/M phase of the cell cycle did not seem to be inhibited significantly by treatment with anti-IgM antibodies. These results indicate that the mechanism of the inhibition of growth of B104 cells by anti-IgM antibodies is blockage of the transition from the G2 to the M phase of the cell cycle. In contrast to anti-IgM antibodies, anti-IgD antibodies could not cause growth inhibition of B104 cells at all. B cell growth factors such as IL-4 and IL-6 had no effect on the inhibition of growth of B104 cells by anti-IgM antibody. IFN-alpha and -beta, which have no B cell growth factor activity, did increase the number of cells that survived the treatment with anti-IgM antibodies. B104 is an excellent experimental model for the study of the mechanism of signal transduction through sIg as well as the functional difference between sIgM and sIgD.  相似文献   

18.
Our experiments have addressed regulation of B lymphocyte formation by bone marrow stromal cells. Stromal cells appear to produce a regulatory factor that acts at the pre-B cell stage to induce the expression of Ig L chains and surface Ig. Bone marrow stromal cell conditioned medium was found to contain this factor and the active component was partially purified by HPLC. This stromal cell-derived factor had a m.w. between 16,000 and 20,000, was specifically neutralized by anti-IL-4 mAb, 11B11, and enhanced the proliferation of anti-mu-stimulated B cells. We also found that rIL-4 induced B cell formation in culture. In our studies, IL-1 had no direct effect on pre-B cell maturation, however, IL-1 was found to stimulate the production of IL-4 by both heterogeneous bone marrow stromal cells and a cloned stromal cell line, SCL-160. These effects of IL-1 on factor production by stromal cells were duplicated by the addition of bone marrow-derived macrophages to SCL-160 cells. We conclude that stromal cell-derived IL-4 is a physiologic stimulator for B cell generation. In addition, macrophages appear to play a role in B cell formation by regulating the production of IL-4 by stromal cells via the secretion of IL-1.  相似文献   

19.
A single monoclonal T helper (Th) clone can activate B cells in two distinct pathways; a cognate pathway requiring a major histocompatibility complex (MHC)-restricted T-B cell interaction, and a noncognate pathway not requiring an MHC-restricted T-B cell interaction. The present study was undertaken to investigate whether Th cells mediating a given immune response provide further regulatory function to B cells other than helper function. It was demonstrated that conditions of high antigen concentration which activate a noncognate B cell activation pathway simultaneously inhibit IgG responses. The inhibition is shown to be mediated by the T cell factor interleukin 4, produced by activated cloned Th cells. The inhibitory effect of this factor is directed to B cells and is MHC-unrestricted, antigen-nonspecific, and IgG class-specific. In addition to being susceptible to the effects of augmenting cells and suppressor cells, cloned Th cell populations can therefore themselves function as regulatory cells to inhibit IgG responses when stimulated with high dose of specific antigen. These results indicate that Th cells function to regulate B cells both positively and negatively, depending upon the activation conditions.  相似文献   

20.
IL-21 is a type I cytokine whose receptor is expressed on T, B, and NK cells. Within the B cell lineage, IL-21 regulates IgG1 production and cooperates with IL-4 for the production of multiple Ab classes in vivo. Using IL-21-transgenic mice and hydrodynamics-based gene delivery of IL-21 plasmid DNA into wild-type mice as well as in vitro studies, we demonstrate that although IL-21 induces death of resting B cells, it promotes differentiation of B cells into postswitch and plasma cells. Thus, IL-21 differentially influences B cell fate depending on the signaling context, explaining how IL-21 can be proapoptotic for B cells in vitro yet critical for Ag-specific Ig production in vivo. Moreover, we demonstrate that IL-21 unexpectedly induces expression of both Blimp-1 and Bcl-6, indicating mechanisms as to how IL-21 can serve as a complex regulator of B cell maturation and terminal differentiation. Finally, BXSB-Yaa mice, which develop a systemic lupus erythematosus-like disease, have greatly elevated IL-21, suggesting a role for IL-21 in the development of autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号