首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA reassociation kinetics using the phenol emulsion reassociation technique (PERT) [Kohne, D. E., Levison, S. A. & Byers, M. J. (1977) Biochemistry 16 , 5329–5341] has been investigated at high DNA concentrations using an endonuclease S1 assay of reaction progress. Apparent second-order rate constants fall on two intersecting straight lines when presented as a function of DNA concentrations on a log–log plot. In the low DNA concentration range, the rate constants drop about 10-fold when concentration increases 1000-fold. In the high DNA concentration range, the rate constants drop more than 10-fold when concentration increases 10-fold. The slopes of these lines are the same in different solvents and at different temperatures. The intersection between the lines occurs when the available catalytic surface is saturated. At high DNA concentrations, high-complexity heterologous denatured DNA apparently competes 2–4 times better for the surface than homologous DNA because it does not participate in a reassociation reaction. Native and partially native DNA molecules cannot compete with single-stranded DNA for a saturated surface. At high DNA concentrations, reactions using PERT become dependent on the single-strand DNA length. Increasing length lowers reassociation rates.  相似文献   

2.
The carboxy-terminal domain of the p53 protein comprising amino acid residues 311 to 393 is able to promote the reassociation of single-stranded RNA or DNA into duplex hybrids. This domain is as efficient as the intact p53 protein in both the rate and the extent of the double-stranded product produced in this reaction. Both wild-type and mutant p53 proteins from cancerous cells carry out this reaction. The monoclonal antibody PAb421, which detects an epitope between residues 370 and 378, blocks the ability of p53 to reassociate single strands of RNA or DNA. Similarly, the alternative splice form of the murine p53 protein, which removes amino acid residues 364 to 390 and replaces them with 17 new amino acids, does not carry out the reassociation reaction with RNA or DNA. This is the first indication of functionally distinct properties of the alternative splice forms of p53. These results suggest that this splice alternative can regulate a p53-mediated reaction that may be related to the functions of this protein.  相似文献   

3.
Mass distribution in a sucrose gradient of deoxyribonucleic acid (DNA) fragments arising as a result of random breaks is predicted by analytical means from which computer evaluations are plotted. The analytical results are compared with the results of verifying experiments: (i) a Monte Carlo computer experiment in which simulated molecules of DNA were individuals of unit length subjected to random "breaks" applied by a random number generator, and (ii) an in vitro experiment in which molecules of T4 DNA, highly labeled with (32)P, were stored in liquid nitrogen for variable periods of time during which a precisely known number of (32)P atoms decayed, causing single-stranded breaks. The distribution of sizes of the resulting fragments was measured in an alkaline sucrose gradient. The profiles obtained in this fashion were compared with the mathematical predictions. Both experiments agree with the analytical approach and thus permit the use of the graphs obtained from the latter as a means of determining the average number of random breaks in DNA from distributions obtained experimentally in a sucrose gradient. An example of the application of this procedure to a previously unresolved problem is provided in the case of DNA from ultraviolet-irradiated phage which undergoes a dose-dependent intracellular breakdown. The relationship between the number of lethal hits and the number of single-stranded breaks was not previously established. A comparison of the calculated number of nicks per strand of DNA with the known dose in phage-lethal hits reveals a relationship closely approximating one lethal hit to one single-stranded break.  相似文献   

4.
The recognition of double-stranded DNA breaks and single-stranded nicks by human poly(ADP-ribose) polymerase and the consequent enzymic activation were examined using derivatives of the enzyme expressed in Escherichia coli. The N-terminal 162 residues encompass two zinc fingers. Deletion or mutation of the first finger results in a loss of activation by DNA with either single-stranded or double-stranded damage. Destruction of the second finger reduces activation by double-stranded DNA breaks only slightly, but eliminates activation by single-stranded DNA nicks. These data suggest that activation by single-stranded DNA nicks requires two zinc fingers, but activation by double-stranded DNA breaks requires only the finger closer to the N terminus. Variant proteins that lack both zinc fingers are enzymically inactive but still exhibit weak DNA binding, which is independent of DNA damage. Thus, other regions are also capable of binding intact DNA, but the recognition of a strand nick or break which occasions the synthesis of poly(ADP-ribose) specifically requires the zinc fingers.  相似文献   

5.
A method for the equalization of double-stranded DNA concentrations in the mixture which may be used for equalizing double-stranded cDNA concentrations involves thermal denaturation of the double-stranded DNA mixture followed by reassociation. The initial reassociation rate is Vi = Ki.(single-stranded DNA)2, and by the end of the process the concentrations of the unreassociated molecules for different DNAs should be approximately equal. Using hydroxylapatite chromatography one can separate single-stranded DNAs from double-stranded DNAs and carry out complete single-stranded DNAs reassociation. The new ratio of different double-stranded DNA concentrations would be almost 1.  相似文献   

6.
Detection of DNA strand breaks in single cells using flow cytometry   总被引:2,自引:0,他引:2  
A preliminary method is reported of alkaline unwinding of DNA within single cells and quantitation of the single-stranded and double-stranded DNA with the fluorescent probe acridine orange. A suspension of alkali-treated cells is obtained and analysed by flow cytometry. An increase in the amount of single-stranded DNA is taken as an indication of strand breaks. An advantage of this method is that a large number of cells can be individually analysed for DNA strand breaks. A measurement of DNA content is also obtained, making it possible to discriminate between cells in various parts of the cell cycle.  相似文献   

7.
DNA isolated from the hepatitis B antigen form known as the Dane particle was examined by electron microscopy before and after the endogenous Dane particle DNA polymerase reaction. The most frequently occurring form was an untwisted circular double-stranded DNA molecule approximately 1 mum in length. Less frequently occurring forms included circular DNA of approximately unit length and having one or more small single-stranded regions, similar circular molecules with one or more tails either shorter or longer than 1 mum in length, and very small circular molecules with tails. There was no increase in frequency or length of tails after a DNA polymerase reaction, suggesting that tails were not formed during this reaction. The mean length of circular molecules increased by 23% when DNA was spread in formamide compared with aqueous spreading, suggesting that single-stranded regions are present in most of the molecules. The mean length of circular molecules obtained from aqueous spreading increased by 27% after a Dane particle DNA polymerase reaction. This indicates that single-stranded regions were converted to double-stranded DNA during the reaction.  相似文献   

8.
9.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

10.
Bruzel A  Cheung VG 《Genomics》2006,87(2):286-289
Reassociating double-stranded DNA from single-stranded components is necessary for many molecular genetics experiments. The choice of a DNA reassociation method is dictated by the complexity of the starting material. Reassociation of simple oligomers needs only slow cooling in an aqueous environment, whereas reannealing the many single-stranded DNAs of complex genomic mixtures requires both a phenol emulsion to accelerate DNA reassociation and dedicated equipment to maintain the emulsion. We present a method that is equally suitable for reassociating either simple or complex DNA mixtures. The Oscillating Phenol Emulsion Reassociation Technique (OsPERT) was primarily developed to prepare heteroduplex DNA from alkali-denatured high molecular weight human genomic DNA samples in which hundreds of thousands of fragments need to be reannealed, but the simplicity of the technique makes it practical for less demanding DNA reassociation applications.  相似文献   

11.
Sequence specificity of 125I-labelled Hoechst 33258 in intact human cells   总被引:2,自引:0,他引:2  
Using polyacrylamide/urea DNA sequencing gels, the DNA sequence selectivity of 125I-labelled Hoechst 33258 damage has been determined in intact human cells to the exact base-pair. This was accomplished using a novel procedure with human alpha RI-DNA as the target DNA sequence. In this procedure, after size fractionation, the alpha RI-DNA is selectively purified by hybridization to a single-stranded M13 clone containing an alpha RI-DNA insert. The sequence specificity of [125I]Hoechst 33258 was indistinguishable in intact cells from purified high molecular weight DNA; and this is surprising considering the more complex environment of DNA in the nucleus where DNA is bound to nucleosomes and other DNA binding proteins. The ligand preferentially binds to DNA sequences which have four or more consecutive A.T base-pairs. The extent of damage was measured with a densitometer and, relative to the damage hotspot at base-pair 94, the extent of damage was similar in both purified high molecular weight DNA and intact cells. [125I]Hoechst 33258 causes only double-strand breaks, since single-strand breaks or base damage were not detected. These experiments represent the first occasion that the sequence specificity of a DNA damaging agent, which causes only double-strand breaks, has been determined to the exact base-pair in intact cells.  相似文献   

12.
This paper offers a criticism of the common approach to the reassociation kinetics of eukaryotic DNA assuming an independent reassociation of nucleotide sequences with different frequencies of reiteration. The reassociation of randomly sheared DNA containing reiterated sequences interspersed with unique ones is described in terms of the model for randomly sheared DNA proposed by Gavrilov & Mazo (1977). Computations performed for different values of the interspersion parameters demonstrate their influence on the reassociation rate of total DNA and its repeat-enriched fraction. The reassociation rate of repeated sequences increases with their length. In the case of short-period interspersion appreciable differences are observed between the reassociation kinetics computed in terms of the random shearing model and the curves obtained for an admittedly independent reassociation of repeated and single-copy sequences.  相似文献   

13.
Unidirectional pulsed-field electrophoresis improves the separation of single-stranded DNA molecules longer than 20 kilobases (kb) in alkaline agarose gels compared to static-field electrophoresis. The greatest improvement in separation is for molecules longer than 100 kb. The improved resolution of long molecules with unidirectional pulsed-field electrophoresis makes possible the measurement of lower frequencies of single-strand breaks. The analytical function that relates the length and mobility of single-stranded DNA electrophoresed with a static field also applies to unidirectional pulsed field separations. Thus, the computer programs used to measure single-strand breaks are applicable to both undirectional pulsed- and static-field separations. Unidirectional pulsed-field electrophoresis also improves the separation of double-stranded DNA in neutral agarose gels. The function relating molecular length and mobility for double-stranded DNA separated by unidirectional pulsed-field electrophoresis is a superset of the function for single-stranded DNA. The coefficients of this function can be determined by iterative procedures.  相似文献   

14.
The DNA-unwinding method developed by Ahnstr?m and his coworkers to measure DNA strand breaks in mammalian cells was used to measure single-strand breaks (SSB) in the DNA of intact yeast cells. DNA unwinding, which took place inside the rigid cell wall of yeast, was investigated as a function of time, radiation dose, and of pH and salt concentration of the alkaline solution. After DNA unwinding had taken place, the cell wall was destroyed by partial enzymatic digestion and sonication in the presence of detergents. Fragments of single- and double-stranded DNA were separated using hydroxylapatite chromatography. In this way the most suitable conditions for DNA unwinding within the cell wall were established. The results show that SSB and double-strand breaks (DSB) give rise to different kinetics of DNA unwinding.  相似文献   

15.
A rapid sonication method for lysis of Gram-positive bacteria was evaluated for use in combination with quantitative real-time polymerase chain reaction (PCR) analyses for detection. Other criteria used for evaluation of lysis were microscopic cell count, colony forming units (cfu), optical density at 600 nm and total yield of DNA measured by PicoGreen fluorescence. The aim of this study was complete disruption of cellular structures and release of DNA without the need for lysing reagents and time-consuming sample preparation. The Gram-positive bacterium Bacillus cereus was used as a model organism for Gram-positive bacteria. It was demonstrated by real-time PCR that maximum yield of DNA was obtained after 3 to 5 min of sonication. The yield of DNA was affected by culture age and the cells from a 4-h-old culture in the exponential phase of growth gave a higher yield of DNA after 5 min of sonication than a 24-h-old culture in the stationary phase of growth. The 4-h-old culture was also more sensitive for lysis caused by heating. The maximum yield of DNA, evaluated by real-time PCR, from a culture of the Gram-negative bacterium Escherichia coli, was obtained after 20 s of sonication. However, the yield of target DNA from E. coli rapidly decreased after 50 s of sonication due to degradation of DNA. Plate counting (cfu), microscopic counting and absorbance at 600 nm showed that the number of viable and structurally intact B. cereus cells decreased rapidly with sonication time, whereas the yield of DNA increased as shown by PicoGreen fluorescence and real-time PCR. The present results indicate that 3-5 min of sonication is sufficient for lysis and release of DNA from samples of Gram-positive bacteria.  相似文献   

16.
Xenopus transcription factor A promotes DNA reassociation   总被引:4,自引:0,他引:4  
  相似文献   

17.
A simple method for the isolation and characterization of DNA-DNA and DNA-RNA hybrid molecules formed in solution was developed. It was based on the fact that, in appropriate salt concentration, such as 5% Na2HPO4, DNA in either double-stranded (DNA-DNA or DNA-RNA) or single-stranded forms, but not free nucleotides, can bind to diethylaminoethylcellulose disc filters (DE81). Thus tested samples were treated with the single-strand-specific nuclease S1 and then applied to DE81 filters. The free nucleotides, resulting from degrading the single-stranded molecules, were removed by intensive washing with 5% Na2HPO4, leaving only the hybrid molecules on the filters. The usefulness of this method was illustrated in dissociation and reassociation studies of viral (SV40) or cellular (NIH/3T3) DNAs and DNA-RNA hybrid molecules. Using this technique the reassociation of denatured SV40 DNA was found to be a very rapid process. Dissociation studies revealed that the melting curves of tested DNAs were dependent on salt concentration. Thus the melting temperatures (tm) obtained for SV40 DNA were 76 degrees C at 1 X SSC (0.15 M NaCl-0.015 M sodium citrate) and 65 degrees C at 0.1 X SSC, and for NIH/3T3 DNA 82 degrees C at 1 X SSC and 68 degrees C at 0.1 X SSC. MuLV DNA-RNA hybrid molecules were formed by annealing in vitro synthesized MuLV DNA with 70S MuLV RNA at 68 degrees C. The melting temperature of this hybrid in the annealing solution was 87 degrees C. Another important feature of this procedure was that, after being selectively bound to the filters, the hybrid molecules could efficiently be recovered by heating the filters for 5 min at 60 degrees C in 1.5-1.7 M KCl. The recovered molecules were intact hybrids as they were found to be completely resistant to S1 nuclease.  相似文献   

18.
1. The genomic structure of a fish (Psetta maxima) and of a Tapeworm (Bothriocephalus), who form a close host-parasite association, was determined by reassociation kinetics experiments. 2. Spectrophotometric readings of single-stranded versus double-stranded DNA separated on hydroxylapatite columns after reassociation at Cot values ranging from 0.0001 to 10(5) allowed the drawing of the reassociation curves of both genomes. 3. Different fractions according to their degree of repetitivity were evidenced, and the relative amounts of repetitive versus single-copy sequences, as well as their complexity, were calculated. 4. It appears that the amount of non-repetitive DNA is lower in the Tapeworm than in its vertebrate host, although the complexity of these single-copy sequences is the same.  相似文献   

19.
Specificity of the S1 nuclease from Aspergillus oryzae.   总被引:19,自引:0,他引:19  
Conditions are described for digesting single-stranded DNA by S1 nuclease without introducing breaks in double-stranded DNA. The enzyme is inhibited by low concentrations of various compounds of phosphate. Under certain conditions S1 nuclease cleaves the strand opposite a nick in bacteriophage T5 DNA; under other conditions, the enzyme cleaves a loop in one strand of heteroduplex lambdaDNA while leaving the opposite strand intact. S1 nuclease makes many single strand breaks in ultraviolet-irradiated duplex lambdaDNA. Superhelical DNA of phiX174 (Form I) is converted first to a relaxed circular molecule (Form II), and then to a linear molecule (Form III) by cleavage at one site per molecule. Since the cleavage occurs at many sites in the population of molecules, the partially single-stranded regions in phiX174 superhelical DNA are not determined by specific nucleotide sequences.  相似文献   

20.
DNA double-strand breaks are created by ionizing radiation or during V(D)J recombination, the process that generates immunological diversity. Breaks are repaired by an end-joining reaction that requires DNA-PKCS, the catalytic subunit of DNA-dependent protein kinase. DNA-PKCS is a 460 kDa serine-threonine kinase that is activated by direct interaction with DNA. Here we report its structure at 22 A resolution, as determined by electron crystallography. The structure contains an open channel, similar to those seen in other double-stranded DNA-binding proteins, and an enclosed cavity with three openings large enough to accommodate single-stranded DNA, with one opening adjacent to the open channel. Based on these structural features, we performed biochemical experiments to examine the interactions of DNA-PKCS with different DNA molecules. Efficient kinase activation required DNA longer than 12 bp, the minimal length of the open channel. Competition experiments demonstrated that DNA-PKCS binds to double- and single-stranded DNA via separate but interacting sites. Addition of unpaired single strands to a double-stranded DNA fragment stimulated kinase activation. These results suggest that activation of the kinase involves interactions with both double- and single-stranded DNA, as suggested by the structure. A model for how the kinase is regulated by DNA is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号