首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental evidence suggests that vasculogenesis may play an important role in tumour vascularisation. While angiogenesis involves the proliferation and migration of endothelial cells (ECs) in pre-existing vessels, vasculogenesis involves the mobilisation of bone-marrow-derived endothelial progenitor cells (EPCs) into the bloodstream. Once blood-borne, EPCs home in on the tumour site, where subsequently they may differentiate into ECs and form vascular structures. In this paper, we develop a mathematical model, formulated as a system of nonlinear ordinary differential equations (ODEs), which describes vascular tumour growth with both angiogenesis and vasculogenesis contributing to vessel formation. Submodels describing exclusively angiogenic and exclusively vasculogenic tumours are shown to exhibit similar growth dynamics. In each case, there are three possible scenarios: the tumour remains in an avascular steady state, the tumour evolves to a vascular equilibrium, or unbounded vascular growth occurs. Analysis of the full model reveals that these three behaviours persist when angiogenesis and vasculogenesis act simultaneously. However, when both vascularisation mechanisms are active, the tumour growth rate may increase, causing the tumour to evolve to a larger equilibrium size or to expand uncontrollably. Alternatively, the growth rate may be left unaffected, which occurs if either vascularisation process alone is able to keep pace with the demands of the growing tumour. To clarify further the effects of vasculogenesis, the full model is also used to compare possible treatment strategies, including chemotherapy and antiangiogenic therapies aimed at suppressing vascularisation. This investigation highlights how, dependent on model parameter values, targeting both ECs and EPCs may be necessary in order to effectively reduce tumour vasculature and inhibit tumour growth.  相似文献   

2.
Proliferin-related protein (PRP) is a potent placental antiangiogenic hormone. To test the antiangiogenic potential of PRP to block tumor growth, we engineered tumor cells to express this hormone. Both SV40-transformed BALB/c mouse 3T3 fibroblasts and rat C6 glioma cells have markedly reduced growth rates as tumors in mice if they express high levels of PRP. In both models, the small tumors that form are largely avascular, whereas control tumors are rich in blood vessels, consistent with PRP limiting tumor growth by preventing neovascularization of the tumors. The antiangiogenic effects of PRP are also detected on human endothelial cells, suggesting that the receptor and signaling pathway of this mouse hormone are conserved between mouse and human and may represent useful targets for the development of antiangiogenic therapeutics. That signaling pathway appears to involve an inhibition of arachidonic acid release, based on the ability of arachidonic acid to overcome the antiangiogenic effects of PRP.  相似文献   

3.
Angiogenesis, i.e. formation of new blood vessels out of pre-existing capillaries, is essential to the development of tumour vasculature. The discovery of specific antiangiogenic inhibitors has important therapeutic implications for the development of novel cancer treatments. Vasostatin, the N-terminal domain of calreticulin, is a potent endogenous inhibitor of angiogenesis and tumour growth. In our study, using B16(F10) murine melanoma model and electroporation we attempted intramuscular transfer of human vasostatin gene. The gene therapy was combined with antiangiogenic drug dosing schedule of a known chemotherapeutic (cyclophosphamide). The combination of vasostatin gene therapy and cyclophosphamide administration improved therapeutic effects in melanoma tumours. We observed both significant inhibition of tumour growth and extended survival of treated mice. To our knowledge, this is one of the first reports showing antitumour efficacy of electroporation-mediated vasostatin gene therapy combined with antiangiogenic chemotherapy.  相似文献   

4.
E10A, a replication-defective adenovirus carrying human endostatin gene, has finished Phase I clinical trials for solid cancers. We assessed whether the combination of E10A with docetaxel would enhance antiangiogenic activities and inhibit prostate cancer growth and metastases. Combination use of conditioned medium from prostate cancer cells infected by E10A and docetaxel exerted synergistic inhibition of HUVECs proliferation, migration and tube formation, compared with either agent alone. In prostate cancer s.c. xenograft models, combined therapy resulted in significant tumour growth inhibition and survival improvement. The antitumoural effect was tightly correlated with a remarkable decrease in tumour cell proliferation, microvessel, especially immature vasculature and significant increase in apoptosis induction. Systemic administration of E10A and docetaxel also effectively inhibited orthotopic growth and metastases of prostate cancer and achieved better in vivo antiangiogenic effects than either agent alone. Our data indicate that E10A in combination with docetaxel exert enhanced antiangiogenic activities and inhibit prostate cancer growth and metastases. Therefore, this approach may be an effective treatment for advanced prostate cancer and deserves more extensive investigation.  相似文献   

5.
The formation of new blood vessels is the initial step in progressive tumour development and metastasis. The first stage in tumour angiogenesis is the activation of endothelial cells. Copper ions stimulate proliferation and migration of endothelial cells. It has been shown that serum copper concentration increases as the cancer disease progresses and correlates with tumour incidence and burden. Copper ions also activate several proangiogenic factors, e.g., vascular endothelial growth factor, basic fibroblast growth factor, tumour necrosis factor alpha and interleukin 1. This review concerns a brief introduction into the basics of tumour blood vessel development as well as the regulatory mechanisms of this process. The role of copper ions in tumour angiogenesis is discussed. The new antiangiogenic therapies based on a reduction of copper levels in tumour microenvironment are reviewed.  相似文献   

6.
The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis, and appears to be an effective and safe antiangiogenic approach. These results shed light on the biological roles of CD9 and may lead to novel antiangiogenic therapies.  相似文献   

7.
The potential for avoiding acquired resistance to therapy has been proposed as one compelling theoretical advantage of antiangiogenic therapy based on the normal genetic status of the target vasculature. However, previous work has demonstrated that tumors may resume growth after initial inhibition if antiangiogenic blockade is continued for an extended period. The mechanisms of this recurrent growth are unclear. In these studies, we characterized molecular changes in vasculature during apparent resumption of xenograft growth after initial inhibition by vascular endothelial growth factor blockade, "metronome" topotecan chemotherapy, and combined agents in a xenograft murine model of human Wilms' tumor. Tumors that grew during antiangiogenic blockade developed as viable clusters surrounding strikingly remodeled vessels. These vessels displayed significant increases in diameter and active proliferation of vascular mural cells and expressed platelet-derived growth factor-B, a factor that functions to enhance vascular integrity via stromal cell recruitment. In addition, remodeled vessels were marked by expression of ephrinB2, required for proper assembly of stromal cells into vasculature. Thus, enhanced vascular stability appears to characterize tumor vessel response to chronic antiangiogenesis, features that potentially support increased perfusion and recurrent tumor growth.  相似文献   

8.
A combined targeted/phenotypic approach for the rapid identification of novel antiangiogenics with in vivo efficacy is herein reported. Considering the important role played by the tyrosine kinase c-Src in the regulation of tumour angiogenesis, we submitted our in-house library of c-Src inhibitors to a sequential screening approach: in silico screening on VEGFR2, in vitro screening on HUVEC cells, ADME profiling, formulation and in vivo testing on a zebrafish model. A promising antiangiogenic candidate able to interfere with the vascular growth of a zebrafish model at low micromolar concentration was thus identified.  相似文献   

9.
Objectives: The administration schedule appears to be a particularly relevant factor in determining the effectiveness of an antiangiogenic drug. A better quantitative knowledge of the interactions between tumour growth and the development of its vasculature could help to design effective therapies.
Material and Methods: Biological and clinical inferences were derived from the analysis of a mathematical model proposed by Hahnfeldt et al. (1999), and some of its variants. In particular, we compared the effect of constant continuous infusion of an anti-angiogenic drug that induces vascular loss, to the effect of periodic, bolus-based therapy.
Results and Conclusions: The role of drug elimination rate and of dose fractionation was investigated, and we show that different schedulings, guaranteeing the same mean value of drug concentration, may exhibit very different long-term responses according to their concentration vs. time profile. For a large class of tumour growth laws, the profiles that approach the constant one are the most effective. This behaviour appears to depend on the 'cooperativity' of the tumour-vasculature interaction and on the functional form of the relationship between tumour growth and vasculature extent. Moreover, we suggest that a therapy approaching constant drug infusion might be advantageous also in the case of cytostatic anti-angiogenic drugs.  相似文献   

10.
The formation of new vessels, a process referred to as neoangiogenesis, is one of the key pathophysiological mechanisms in the development and progression of cancer. It contributes to tumour growth and dissemination of neoplastic cells and can determine response or resistance to anticancer therapies. It involves different signaling pathways including the vascular endothelial growth factor (VEGF) pathway and integrins, which are also preferred targets for the development of antiangiogenic therapies. Changes in the microvasculature induced by antiangiogenic treatments occur before morphological changes can be detected with conventional imaging approaches. The development of molecular tools enabling an assessment of these targets before initiating therapy, or early detection of response or recurrence during or following treatment is essential for the close monitoring of antiangiogenic treatments. These outstanding needs call for the development of specific probes enabling the characterization of the molecules and pathways involved. This review summarizes the major signaling pathway involved in promoting tumor neoangiogenes is, the different radiotracers recently developed in preclinical and clinical settings, as well as their potential use in humans in order to improve the management of patients treated with antiangiogenic treatments.  相似文献   

11.
Vascular endothelial cells receive proangiogenic or antiangiogenic signals from components of extracellular matrix (ECM) depending upon the situation and many molecular signals can have opposite effects in different vascular beds. Tissue inhibitor of metalloproteinase 1 is antiangiogenic in several tissues, but promotes retinal neovascularization. When cleaved from native collagens, several of the non-collagenous domains (NC1) of basement membrane collagens have antiangiogenic effects in some tissues, but this is context dependent for the NC1 of the alpha 1 chain of collagen IV. It is critical to examine effects in several well-defined model systems before assuming that an ECM component is universally antiangiogenic. In this study, we examined the effects of a recombinant fragment of NC1 of the alpha 2 chain of type IV collagen (alpha2(IV)NC1) in a well-characterized model of ocular neovascularization. Intravitreous or periocular injections of alpha2(IV)NC1 caused selective apoptosis of endothelial cells participating in neovascularization resulting in suppression of neovascularization when the peptide was given prior to onset of new vessel sprouting. Importantly, when the peptide was given after neovascularization had already developed, it caused the new vessels to regress. This suggests that alpha2(IV)NC1, which has previously been shown to suppress tumor angiogenesis in xenograft models, is also a strong antiangiogenic agent in the choroid and is a therapeutic candidate for treatment of neovascular age-related macular degeneration.  相似文献   

12.
13.
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways.  相似文献   

14.
15.
Targeted intraoperative radiotherapy (Targit) is a new concept of partial breast irradiation where single fraction radiotherapy is delivered directly to the tumour bed. Apart from logistic advantages, this strategy minimizes the risk of missing the tumour bed and avoids delay between surgery and radiotherapy. It is presently being compared with the standard fractionated external beam radiotherapy (EBRT) in randomized trials. In this paper we present a mathematical model for the growth and invasion of a solid tumour into a domain of tissue (in this case breast tissue), and then a model for surgery and radiation treatment of this tumour. We use the established linear-quadratic (LQ) model to compute the survival probabilities for both tumour cells and irradiated breast tissue and then simulate the effects of conventional EBRT and Targit. True local recurrence of the tumour could arise either from stray tumour cells, or the tumour bed that harbours morphologically normal cells having a predisposition to genetic changes, such as a loss of heterozygosity (LOH) in genes that are crucial for tumourigenesis, e.g. tumour suppressor genes (TSGs). Our mathematical model predicts that the single high dose of radiotherapy delivered by Targit would result in eliminating all these sources of recurrence, whereas the fractionated EBRT would eliminate stray tumour cells, but allow (by virtue of its very schedule) the cells with LOH in TSGs or cell-cycle checkpoint genes to pass on low-dose radiation-induced DNA damage and consequently mutations that may favour the development of a new tumour. The mathematical model presented here is an initial attempt to model a biologically complex phenomenon that has until now received little attention in the literature and provides a 'proof of principle' that it is possible to produce clinically testable hypotheses on the effects of different approaches of radiotherapy for breast cancer.  相似文献   

16.
The anticoagulant serpin antithrombin acquires a potent antiangiogenic activity upon undergoing conformational alterations to cleaved or latent forms. Here we show that antithrombin antiangiogenic activity is mediated at least in part through the ability of the conformationally altered serpin to block the proangiogenic growth factors fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) from forming signaling competent ternary complexes with their protein receptors and heparan sulfate co-receptors on endothelial cells. Cleaved and latent but not native forms of antithrombin blocked the formation of FGF-2-FGF receptor-1 ectodomain-heparin ternary complexes, and the dimerization of these complexes in solution and similarly inhibited the formation of FGF-2-heparin binary complexes and their dimerization. Only antiangiogenic forms of antithrombin likewise inhibited (125)I-FGF-2 binding to its low affinity heparan sulfate co-receptor and blocked FGF receptor-1 autophosphorylation and p42/44 MAP kinase phosphorylation in cultured human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with heparinase III to specifically eliminate the FGF-2 heparan sulfate co-receptor suppressed the ability of antiangiogenic antithrombin to inhibit growth factor-stimulated proliferation. Antiangiogenic antithrombin inhibited full-length VEGF(165) stimulation of HUVEC proliferation but did not affect the stimulation of cells by the heparin-binding domain-deleted VEGF(121). Taken together, these results demonstrate that antiangiogenic forms of antithrombin block the proangiogenic effects of FGF-2 and VEGF on endothelial cells by competing with the growth factors for binding the heparan sulfate co-receptor, which mediates growth factor-receptor interactions. Moreover, the inability of native antithrombin to bind this co-receptor implies that native and conformationally altered forms of antithrombin differentially bind proangiogenic heparan sulfate domains.  相似文献   

17.
 A two-phase model is presented to describe avascular tumour growth. Conservation of mass equations, including oxygen-dependent cell growth and death terms, are coupled with equations of momentum conservation. The cellular phase behaves as a viscous liquid, while the viscosity of the extracellular water manifests itself as an interphase drag. It is assumed that the cells become mechanically stressed if they are too densely packed and that the tumour will try to increase its volume in order to relieve such stress. By contrast, the overlapping filopodia of sparsely populated cells create short-range attractive effects. Finally, oxygen is consumed by the cells as it diffuses through the tumour. The resulting system of equations are reduced to three, which describe the evolution of the tumour cell volume fraction, the cell speed and the oxygen tension. Numerical simulations indicate that the tumour either evolves to a travelling wave profile, in which it expands at a constant rate, or it settles to a steady state, in which the net rates of cell proliferation and death balance. The impact of varying key model parameters such as cellular viscosity, interphase drag, and cellular tension are discussed. For example, tumours consisting of well-differentiated (i.e. viscous) cells are shown to grow more slowly than those consisting of poorly-differentiated (i.e. less viscous) cells. Analytical results for the case of oxygen-independent growth are also presented, and the effects of varying the key parameters determined (the results are in line with the numerical simulations of the full problem). The key results and their biological implications are then summarised and future model refinements discussed. Received: 3 May 2001 / Revised version: 7 January 2002 / Published online: 17 July 2002  相似文献   

18.
Angiogenesis, the expansion of preexisting blood vessels, is a complex process required for tumor growth and metastasis. Although current antiangiogenic strategies have shown promising results in several cancer types, identifi-cation of additional antiangiogenic targets is required to improve the therapeutic response. Herein, we show that the microtubule-binding protein CLIP-170 (cytoplasmic linker protein of 170 kDa) is highly expressed in breast tumor samples and correlates positively with blood vessel density. Depletion of CLIP-170 significantly impaired vascular endothelial tube formation and sprouting in vitro and inhibited breast tumor growth in mice by decreasing tumor vascularization. Our data further show that CLIP-170 is important for the migration but not the proliferation of vascular endothelial cells. In addition, CLIP-170 promotes the polarization of endothelial cells in response to the angiogenic stimulus. These findings thus demonstrate a critical role for CLIP-170 in tumor angiogenesis and suggest its potential as a novel antiangiogenic target  相似文献   

19.
20.
Dose and time intensifications of chemotherapy improved the outcome of lymphoma therapy. However, recent study results show that too intense therapies can result in inferior tumour control. We hypothesise that the immune system plays a key role in controlling residual tumour cells after treatment. More intense therapies result in a stronger depletion of immune cells allowing an early re-growth of the tumour. We propose a differential equations model of the dynamics and interactions of tumour and immune cells under chemotherapy. Major model features are an exponential tumour growth, a modulation of the production of effector cells by the presence of the tumour (immunogenicity), and mutual destruction of tumour and immune cells. Chemotherapy causes damage to both, immune and tumour cells. Growth rate, chemosensitivity, immunogenicity, and initial size of the tumour are assumed to be patient-specific, resulting in heterogeneity regarding therapy outcome. Maximum-entropy distributions of these parameters were estimated on the basis of clinical survival data. The resulting model can explain the outcome of five different chemotherapeutic regimens and corresponding hazard-ratios. We conclude that our model explains observed paradox effects in lymphoma therapy by the simple assumption of a relevant anti-tumour effect of the immune system. Heterogeneity of therapy outcomes can be explained by distributions of model parameters, which can be estimated on the basis of clinical survival data. We demonstrate how the model can be used to make predictions regarding yet untested therapy options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号