首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.  相似文献   

2.
Recently, there has been a rapid increase in the use of cervical spine interbody fusion cages, differing in design and biomaterial used, in competition to autologous iliac bone graft and bone cement (PMMA). Limited biomechanical differences in primary stability, as well as advantages and disadvantages of each cage or material have been investigated in studies, using an in vitro human cervical spine model. 20 human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or PMMA after discectomy. Non-destructive biomechanical testing was performed, including flexion/extension and lateral bending using a spine testing apparatus. Three-dimensional segmental range of motion (ROM) was evaluated using an ultrasound measurement system. ROM increased more in flexion/extension and lateral bending after PMMA fusion (26.5%/36.1%), then after implantation of the Ecopore-cage (8.1%/7.8%). In this first biomechanical in vitro examination of a new porous ceramic bone replacement material a) the feasibility and reproducibility of biomechanical cadaveric cervical examination and its applicability was demonstrated, b) the stability of the ceramic cage as a stand alone interbody cage was confirmed in vitro, and c) basic information and knowledge for our intended biomechanical and histological in vivo testing, after implantation of Ecopore in cervical sheep spines, were obtained.  相似文献   

3.
BACKGROUND: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. METHOD OF APPROACH: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrainedflexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. RESULTS: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. CONCLUSIONS: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.  相似文献   

4.
This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC) joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM) or neural zone (NZ) between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine.  相似文献   

5.
Spinal interbody fusion has proved to be a useful procedure for the surgical stabilization of spinal segments, for which fusion cases made of metal or reinforced polymers are increasingly being used. For the mechanical testing of spinal interbody implants, a test setup has been developed on the basis of an ASTM proposal. Initially, testing of lumbar fusion cages made of CFRP (carbon fibre reinforced polymer) was carried out. The implants (UNION Cages, Medtronic Sofamor Danek), which are characterised by their radiolucency on radiography, NMR and CT scans, have a cube-shaped body with three table-tracks on the under and upper surfaces. The cages were tested at different loads. Modifications of the proposed standardized method were carried out to enable implementation of implant-oriented testing. The tested cages were shown to have adequate axial compression, shear and torsional strengths with regard to the implant body. The maximum axial compression force tolerated by the table-tracks was less than the maximal potential loading of the lumbar spine, and, with account being taken of implant design, consequences with regard to surgical technique were drawn. As dictated by the geometry of the table-tracks, parallel grooves have to be made intra-operatively in the vertebral end plates. Axial compressive loads then act on the implant body, and the table-tracks are protected from damage. To avoid in vivo failure, the tested cages should be implanted only when this specific surgical technique is employed. Using supplementary anterior or posterior instrumentation, in vivo failure of the table-tracks under physiological spinal loading is not to be expected.  相似文献   

6.

Sheep model is the most favourable choice for animal study for functional evaluation of the cervical fusion prostheses before clinical application; however, significantly large differences between sheep and human existed in terms of morphological characteristics and daily-activity motions. Questions should be raised as whether the differences between the two species have influence on the reliability of sheep model. Finite element models (FEM) of the cervical spinal system were built to characterize the differences between the two species with respect to the range of motion (ROM) and biomechanical behaviour, and experimental cadaver tests on both species were employed for validation purposes. Results indicate that sheep model represents the worst-case scenario of the human model with exaggerated stresses (up to 3 times more) and ROM (up to 10 times more). Moreover, sheep model is very sensitive to the variation of prostheses design, whilst human model does not, which denotes that the sheep model provides a rather amplified effect of a certain design for its biomechanical performance. Therefore, caution needs to be taken when sheep models were used as the animal model for functional evaluation over various design, and the FEM built in this study can be employed as an effective methodology for performance evaluation of cage prostheses of cervical spine.

  相似文献   

7.
Previous studies have compared the effects of different interbody fusion approaches on biomechanical responses of the lumbar spine to static loadings. However, very few have dealt with the whole body vibration (WBV) condition that is typically present in vehicles. This study was designed to determine the biomechanical differences among anterior, posterior and transforaminal lumbar interbody fusion (ALIF, PLIF and TLIF) under vertical WBV. A previously developed and validated finite element (FE) model of the intact L1–sacrum human lumbar spine was modified to simulate ALIF, PLIF and TLIF with bilateral pedicle screw fixation at L4–L5. Comparative studies on dynamic responses to the axial cyclic loading in these developed models were conducted. The results showed that at the fused L4–L5 level, dynamic responses of the von-Mises stress in L4 inferior and L5 superior endplates for the ALIF, PLIF and TLIF models were increased compared with the intact model. The endplate stresses in the TLIF model were lower than in the ALIF and PLIF models, but the TLIF generated greater stresses in the screws and rods compared with the ALIF and PLIF. At other levels, a decrease in dynamic responses of the disc bulge, annulus stress and intradiscal pressure was observed in all the fusion models compared with the intact one, but there was no obvious difference in these dynamic responses among the ALIF, PLIF and TLIF models. These findings might be useful in understanding vibration characteristics of the whole lumbar spine after different types of fusion surgery.  相似文献   

8.
The anterior cervical fusion is an established surgical procedure for spine stabilization after the removal of an intervertebral disc. However, it is not yet clear which bone graft represents the best choice and whether surgical devices can be efficient and beneficial for fusion. The aim of this work is to study the influence of the spine instrumentation on bone remodeling after a cervical spine surgery and, consequently, on the fusion process. A finite element model of the cervical spine was developed, having computed tomography images as input. Bone was modeled as a porous material characterized by the relative density at each point and the bone remodeling law was derived assuming that bone self-adapts in order to achieve the stiffest structure for the supported loads, with the total bone mass regulated by the metabolic cost of maintaining bone tissue. Apart from the analysis of healthy cervical spine, different surgical scenarios were tested: bone graft with or without a cage and the use of a stabilization plate system. Results showed that the anterior and posterior regions of the disc space are more important to stress transmission and that spinal devices reduce bone growth within bone grafts, being plate systems the most interfering elements. The material of the interbody cages plays a major role in fusion and, therefore, it should be carefully chosen.  相似文献   

9.
Articulating cervical disk implants have been proposed as an alternative to disk fusion in the treatment of cervical disk disease. To examine the mechanical effect of articulating cervical disk implants (ACDI) versus simulated cervical disk fusion, a mechanical test device was constructed and cadaveric tests were carried out. While results show little effect on the pressures above and below the treatment level, the percent hysteretic behavior of the specimens trended to be higher for the ACDI, indicating that these implants retain more of the natural energy absorption capability of the cervical spine.  相似文献   

10.
An innovative surgical procedure is vertebral stabilization by interbody cages. It is currently being used to separate and stabilize vertebral bodies and to promote bony fusion of the vertebrae onto or through the cages. This surgery, at some spine levels, can be performed through a laparoscope as an outpatient procedure with low morbidity. Because the procedure is new, little structural information is available on the interbody cages. The objective of this study was to evaluate the human lumbar spine stabilized by interbody cages biomechanically. The finite element method was used to compare cage designs by considering stresses in the cage and in the bone as well as relative displacements between the cage and the adjacent bone at the interface. The biomechanical evaluation considered different bone densities and considered axial, torsional, and bending loads on the lumbar spine. Stress analysis predicts local regions of stress concentration that could be damaging to cancellous bone and will likely require a remodeling response for local damage. This study predicts relative micromotion that could cause the bone resorption and fibrous tissue formation on the contact surfaces of the cage. The geometric constraints caused by the use of two cages will reduce the relative motion and therefore be more likely to allow bone ingrowth at the posterocentral contact region. Finite element analysis suggests that cages are a promising method for separation and stabilization of the vertebral bodies.  相似文献   

11.
Abstract

An innovative surgical procedure is vertebral stabilization by interbody cages. It is currently being used to separate and stabilize vertebral bodies and to promote bony fusion of the vertebrae onto or through the cages. This surgery, at some spine levels, can be performed through a laparoscope as an outpatient procedure with low morbidity. Because the procedure is new, little structural information is available on the interbody cages. The objective of this study was to evaluate the human lumbar spine stabilized by interbody cages biomechanically. The finite element method was used to compare cage designs by considering stresses in the cage and in the bone as well as relative displacements between the cage and the adjacent bone at the interface. The biomechanical evaluation considered different bone densities and considered axial, torsional, and bending loads on the lumbar spine. Stress analysis predicts local regions of stress concentration that could be damaging to cancellous bone and will likely require a remodeling response for local damage. This study predicts relative micromotion that could cause the bone resorption and fibrous tissue formation on the contact surfaces of the cage. The geometric constraints caused by the use of two cages will reduce the relative motion and therefore be more likely to allow bone ingrowth at the posterocentral contact region. Finite element analysis suggests that cages are a promising method for separation and stabilization of the vertebral bodies.  相似文献   

12.
Abstract

Prediction of the biomechanical effects of fusion surgery on adjacent segments is a challenge in computational biomechanics of the spine. In this study, a two-segment L3-L4-L5 computational model was developed to simulate the effects of spinal fusion on adjacent segment biomechanical responses under a follower load condition. The interaction between the degenerative segment (L4-5) and the adjacent segment (L3-4) was simulated using an equivalent follower spring. The spring stiffness was calibrated using a rigid fusion of a completely degenerated disc model at the L4-5 level, resulting in an upper bound response at the adjacent (L3-4) segment. The obtained upper bound equivalent follower spring was used to simulate the upper bound biomechanical responses of fusion of the disc with different degeneration grades. It was predicted that as the disc degeneration grade at the degenerative segment decreased, the effect on the adjacent segment responses decreased accordingly after fusion. The data indicated that the upper bound computational model can be a useful computational tool for evaluation of the interaction between segments and for investigation of the biomechanical mechanisms of adjacent segment degeneration after fusion.  相似文献   

13.

Objective

For multi-level spondylolysis patients, surgeons commonly choose to fix all the segments with pars interarticularis defect even those without slippage and not responsible for clinical symptoms. In this study, we tried to study the necessity of the preventative long-segment surgery for the defected segment without slippage in treatment of multi-level spondylolysis patients from a biomechanical perspective.

Method

We established a bi-level spondylolysis model with pars defects at L4 and L5 segments, and simulated posterior lumbar interbody fusion (PLIF) and pedicle screw fixation at L5-S1 level. Then we compared the biomechanical changes at L4 segment before and after surgery in neutral, flexion, extension, lateral bending and axial rotation position.

Results

The stress on L4 pars interarticularis was very similar before and after surgery, and reached the highest in axial rotation. The L3-L4 intradiscal pressure was almost the same, while L4-L5 intradiscal pressure changed a little in lateral bending (increase from 1.993 to 2.160 MPa) and axial rotation (decrease from 1.639 to 1.307 MPa) after surgery. The PLIF surgery caused a little increase of range of motion at adjacent L4-L5 and L3-L4 levels, but the change is very tiny (1 degree).

Conclusion

The PLIF surgery will not cause significant biomechanical change at adjacent segment with pars defect in multi-level spondylolysis. On the contrary, excessive long-segment surgery will damage surrounding soft tissues which are important for maintaining the stability of spine. So a preventative long-segment surgery is not necessary for multi-level spondylolysis as long as there are no soft tissue degeneration signs at adjacent level.  相似文献   

14.
In a finite element (FE) analysis of the lumbar spine, different preload application methods that are used in biomechanical studies may yield diverging results. To investigate how the biomechanical behaviour of a spinal implant is affected by the method of applying the preload, hybrid-controlled FE analysis was used to evaluate the biomechanical behaviour of the lumbar spine under different preload application methods. The FE models of anterior lumbar interbody fusion (ALIF) and artificial disc replacement (ADR) were tested under three different loading conditions: a 150 N pressure preload (PP) and 150 and 400 N follower loads (FLs). This study analysed the resulting range of motion (ROM), facet contact force (FCF), inlay contact pressure (ICP) and stress distribution of adjacent discs. The FE results indicated that the ROM of both surgical constructs was related to the preload application method and magnitude; differences in the ROM were within 7% for the ALIF model and 32% for the ADR model. Following the application of the FL and after increasing the FL magnitude, the FCF of the ADR model gradually increased, reaching 45% at the implanted level in torsion. The maximum ICP gradually decreased by 34.1% in torsion and 28.4% in lateral bending. This study concluded that the preload magnitude and application method affect the biomechanical behaviour of the lumbar spine. For the ADR, remarkable alteration was observed while increasing the FL magnitude, particularly in the ROM, FCF and ICP. However, for the ALIF, PP and FL methods had no remarkable alteration in terms of ROM and adjacent disc stress.  相似文献   

15.
OBJECTIVE: To study how the cervical spine is assessed before discontinuation of cervical spine immobilisation in unconscious trauma patients in intensive care units. DESIGN: Telephone interview of consultants responsible for adult intensive care units. SETTING: All 25 intensive care units in the South and West region that admit victims of major trauma. MAIN OUTCOME MEASURES: The clinical and radiological basis on which the decision is made to stop cervical spine immobilisation in unconscious patients with trauma. RESULTS: In 19 units cervical spine immobilisation was stopped in unconscious patients on the basis of radiology alone, and six units combined radiology with clinical examination after the patient had regained consciousness. Sixteen units relied on a normal lateral radiological view of the cervical spine alone, five required a normal lateral and anteroposterior view, and four required a normal lateral, anteroposterior, and open mouth peg view. CONCLUSIONS: There are inconsistencies in the clinical and radiological approach to assessing the cervical spine in unconscious patients with trauma before the removal of immobilisation precautions. There is an overreliance on the lateral cervical spine view alone, which has been shown to be insensitive in this setting.  相似文献   

16.
We have examined the rates of anterior interbody fusion of lumbar spine segments following fusion with a fresh frozen femoral head allograft in 25 heavy smoking patients. They were all stabilized both anteriorly and posteriorly. The indications for surgery were: degenerative disc disease, degenerative spondylolisthesis and nonunion following previous posterolateral fusion of lumbar spine segments. Only patients who had fusion of one or two lumbar segments were included. They all were stabilized posteriorly with pedicle screws and autogenic iliac bone graft. The fusion was assessed at least one year after surgery according to plan X-rays as “Solid”, “Questionable” or “Failure”. One patient was found at follow up not fused, in another one the fusion was “questionable” and all the other 23 patients had an anterior solid fusion. Clinically, 84% of the patients had the same or improved work status as before surgery and 68% acknowledged that they were satisfied with the surgical results. No major complications were recorded and the average length of hospitalization was 10.3 days. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Although considerable effort has been made to understand the biomechanical behavior of the adult cervical spine, relatively little information is available on the response of the pediatric cervical spine to external forces. Since significant anatomical differences exist between the adult and pediatric cervical spines, distinct biomechanical responses are expected. The present study quantified the biomechanical responses of human pediatric spines by incorporating their unique developmental anatomical features. One-, three-, and six-year-old cervical spines were simulated using the finite element modeling technique, and their responses computed and compared with the adult spine response. The effects of pure overall structural scaling of the adult spine, local component developmental anatomy variations that occur to the actual pediatric spines, and structural scaling combined with local component anatomy variations on the responses of the pediatric spines were studied. Age- and component-related developmental anatomical features included variations in the ossification centers, cartilages, growth plates, vertebral centrum, facet joints, and annular fibers and nucleus pulposus of the intervertebral discs. The flexibility responses of the models were determined under pure compression, pure flexion, pure extension, and varying degrees of combined compression-flexion and compression-extension. The pediatric spine responses obtained with the pure overall (only geometric) scaling of the adult spine indicated that the flexibilities consistently increase in a uniform manner from six- to one-year-old spines under all loading cases. In contrast, incorporation of local anatomic changes specific to the pediatric spines of the three age groups (maintaining the same adult size) not only resulted in considerable increases in flexibilities, but the responses also varied as a function of the age of the pediatric spine and type of external loading. When the geometric scaling effects were added to these spines, the increases in flexibilities were slightly higher; however, the pattern of the responses remained the same as found in the previous approach. These results indicate that inclusion of developmental anatomical changes characteristic of the pediatric spines has more of a predominant effect on biomechanical responses than extrapolating responses of the adult spine based on pure overall geometric scaling.  相似文献   

18.
Fifty-six patients who underwent anterior fusion utilizing fibular allograft are reviewed. Thirty-two patients underwent multiple-level anterior cervical discectomy and fusion utilizing fibular strut allograft, and 24 underwent anterior lumbar discectomy and fusion using fibular strut allograft. Cervical surgery was performed via the strut technique of Whitecloud and LaRocca and lumbar surgery was performed via a transperitoneal or retroperitoneal approach. Postoperatively, patients were assigned a clinical grade based on symptomatic relief and medication usage. X-rays were visually inspected, and quantitatively digitized for Cobb angle and translation in order to assess the status of arthrodesis. In the cervical group, the rate of clinical success (87.5%) exceeded the arthrodesis rate. By inspection, 65% fused, at a mean time of 23.5 months postoperatively. In the lumbar group, the overall clinical success rate was 68%. This correlated quite strongly with a fusion rate of 58%. Smoking was a negative correlate with arthrodesis. Patients receiving Workers'' Compensation were also more likely to have an unsatisfactory clinical outcome. The results of this study highlight the difference between anterior arthrodesis in the cervical and lumbar spine. The biomechanical stability afforded by the fibular strut in the cervical spine appears to outweigh the disadvantages of delayed time to union. The rate of posterior cervical fusion to salvage symptomatic pseudoarthrosis was quite low (9.3%), thus suggesting that additional posterior surgery in this particular group of patients should not be considered for a minimum of two years postoperatively. In the lumbar group, status of arthrodesis correlated closely with clinical outcome. Fusion rate in this group was disappointing, corresponding to other reports in the literature. Based on these data, primary anterior body fusion without allograft in the lumbar spine cannot be recommended, as a viable alternative to conventional autograft.  相似文献   

19.
This paper presents a biomechanical analysis of the cervical C5–C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional finite element model of the lower cervical spine is obtained from computed tomography images using a pipeline of image processing, geometric modelling and mesh generation software. Then, a finite element study of parameters' influence on motion and a stress analysis at physiological and different post-operative scenarios were made for the basic movements of the cervical spine. It was confirmed that the results were very sensitive to intervertebral disc properties. The insertion of an anterior cervical plate influenced the stress distribution at the vertebral level as well as in the bone graft. Additionally, stress values in the graft decreased when it is used together with a cage.  相似文献   

20.
This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional finite element model of the lower cervical spine is obtained from computed tomography images using a pipeline of image processing, geometric modelling and mesh generation software. Then, a finite element study of parameters' influence on motion and a stress analysis at physiological and different post-operative scenarios were made for the basic movements of the cervical spine. It was confirmed that the results were very sensitive to intervertebral disc properties. The insertion of an anterior cervical plate influenced the stress distribution at the vertebral level as well as in the bone graft. Additionally, stress values in the graft decreased when it is used together with a cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号