首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

2.
3.
4.
Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east‐central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas.  相似文献   

5.
Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds.  相似文献   

6.
粗毛牛膝菊在中国的入侵与生态位漂移有关 在外来物种入侵和扩散过程中,生态位的漂移可能起到了重要作用。粗毛牛膝菊(Galinsoga quadriradiata) 在中国已造成了较为严重的入侵,占据了许多与其原产地不同的气候区。为此,本研究力图揭示粗毛牛膝菊入侵过程中的气候生态位漂移,分析其在该物种入 侵中国过程中可能发挥的作用。本研究结合粗毛牛膝菊原 产地和入侵地的分布点与气候数据, 采用Maxent模型预测了其在中国潜在的分布,并采用主成分分析的方法评估 了在入侵中国过程中粗毛牛膝菊气候生态位的漂移。模型结果显示,该物种原产地种群和入侵地种群之间只 有32.7%的生态位重叠,两个种群的生态位相似性较低(Schoener's D = 0.093, P < 0.005),这暗示了在其入侵过程中发生了生态位漂移。相比于其原产地种群,其在中国的入侵种群气候生态位的整体范围和中心都明 显地漂移向了温度更低、降水更少的区域;中国南方大部分区域属于粗毛牛膝菊的稳定适生区,而位于入侵 前沿的北方地区则存在局域适应和潜在拓殖区域。这些研究结果说明,粗毛牛膝菊在中国的入侵种群仍处于准平衡阶段,未来有可能继续向新的适生区扩散入侵,其生态位的变化有力地解释了为什么该物种在中国的入侵性强、危害范围大。  相似文献   

7.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

8.
A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.  相似文献   

9.
Spatial modelling of species distributions has become an important tool in the study of biological invasions. Here, we examine the utility of combining distribution and ecological niche modelling for retrieving information on invasion processes, based on species occurrence data from native and introduced ranges. Specifically, we discuss questions, concerning (1) the global potential to spread to other ranges, (2) the potential to spread within established invasions, (3) the detectability of niche differences across ranges, and (4) the ability to infer invasion history through data from the introduced range. We apply this approach to two congeneric pavement ants, Tetramorium sp.E (formerly T. caespitum (Linnaeus 1758)) and T. tsushimae Emery 1925, both introduced to North America. We identify (1) the potential of both species to inhabit ranges worldwide, and (2) the potential of T. sp.E and T. tsushimae, to spread to 23 additional US states and to five provinces of Canada, and to 24 additional US states and to one province of Canada, respectively. We confirm that (3) niche modelling can be an effective tool to detect niche shifts, identifying an increased width of T. sp.E and a decreased width of T. tsushimae following introduction, with potential changes in niche position for both species. We make feasible that (4) combined modelling could become an auxiliary tool to reconstruct invasion history, hypothesizing admixture following multiple introductions in North America for T. sp.E, and a single introduction to North America from central Japan, for T. tsushimae. Combined modelling represents a rapid means to formulate testable explanatory hypotheses on invasion patterns and helps approach a standard in predictive invasion research.  相似文献   

10.
11.
The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.  相似文献   

12.

Premise

Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models.

Methods

In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal.

Results

We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well.

Conclusions

The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.  相似文献   

13.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

14.
15.
16.
A process of adaptive divergence for tolerance to high temperatures was identified using a rare model system, consisting of two sympatric populations of a Lepidoptera (Thaumetopoea pityocampa) with different life cycle timings, a 'mutant' population with summer larval development, Leiria SP, and the founder natural population, having winter larval development, Leiria WP. A third, allopatric population (Bordeaux WP) was also studied. First and second instar larvae were experimentally exposed to daily-cycles of heat treatment reaching maximum values of 36, 38, 40 and 42 °C; control groups placed at 25 °C. A lethal temperature effect was only significant at 42 °C, for Leiria SP, whereas all temperatures tested had a significant negative effect upon Leiria WP, thus indicating an upper threshold of survival c.a. 6 °C above that of the WP. Cox regression model, for pooled heat treatments, predicted mortality hazard to increase for Leiria WP (+108%) and Bordeaux WP (+78%) in contrast to Leiria SP; to increase by 24% for each additional °C; and to decrease by 53% from first to second instar larvae. High variability among individuals was observed, a population characteristic that may favour selection and consequent adaptation. Present findings provide an example of ecological differentiation, following a process of allochronic divergence. Results further contribute to a better understanding of the implications of climate change for ecological genetics.  相似文献   

17.
Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt‐based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.  相似文献   

18.
Species range expansions are crucial for understanding niche formation and the interaction with the environment. Here, we studied the bumblebee Bombus haematurus Kriechbaumer, 1870, a species historically distributed from northern Serbia through northern Iran which has very recently started expanding northwestward into Central Europe without human-mediated dispersal (i.e., it is a natural spread). After updating the global distribution of this species, we investigated if niche shifts took place during this range expansion between newly colonized and historical areas. In addition, we have explored which climatic factors may have favored the natural range expansion of the species. Our results indicated that Bombus haematurus has colonized large territories in 7 European countries outside the historical area in the period from the 1980s to 2018, a natural expansion over an area that equals 20% of the historical distribution. In addition, this bumblebee performs generalism in flower visitation and it occurs in different habitats, although a preference for forested areas clearly emerges. The land-use associated with the species in the colonized areas is similar to the historical distribution, indicating that no major niche shifts occurred during the spread. Furthermore, in recently colonized localities, the range expansion was associated with warming temperatures during the winter and also during both queen overwintering and emergence phases. These findings document a case of natural range expansion due to environmental change rather than due to niche shifts, and specifically they suggest that warmer winters could be linked to the process of natural colonization of new areas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号