首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new methodology to estimate rates of energy acquisition, maintenance, reproductive investment and the onset of maturation (four-trait estimation) by fitting an energy allocation model to individual growth trajectories. The accuracy and precision of the method is evaluated on simulated growth trajectories. In the deterministic case, all life history parameters are well estimated with negligible bias over realistic parameter ranges. Adding environmental variability reduces precision, causes the maintenance and reproductive investment to be confounded with a negative error correlation, and tends, if strong, to result in an underestimation of the energy acquisition and maintenance and an overestimation of the age and size at the onset of maturation. Assuming a priori incorrect allometric scaling exponents also leads to a general but fairly predictable bias. To avoid confounding in applications we propose to assume a constant maintenance (three-trait estimation), which can be obtained by fitting reproductive investment simultaneously to size at age on population data. The results become qualitatively more robust but the improvement of the estimate of the onset of maturation is not significant. When applied to growth curves back-calculated from otoliths of female North Sea plaice Pleuronectes platessa , the four-trait and three-trait estimation produced estimates for the onset of maturation very similar to those obtained by direct observation. The correlations between life-history traits match expectations. We discuss the potential of the methodology in studies of the ecology and evolution of life history parameters in wild populations.  相似文献   

2.
We examined differences in pumpkinseed (Lepomis gibbosus) life-history traits between native North American and introduced European populations, and tested three life-history predictions related to the effect of temperature, growth, waterbody size, and the presence/absence of predators on native and non-native populations. Pumpkinseed populations exhibit more ‘opportunistic’ traits (earlier maturity, smaller size at maturity, and higher reproductive allocation) in their introduced European range than those in their native range. Predictions of life-history traits were improved when indicators of juvenile growth rate (mean length at age 2), waterbody size (surface area), and thermal regime (air temperature degree-days above 10 °C) were incorporated into models along with continental location, but European pumpkinseed populations exhibit more opportunistic life-history traits than North American populations even when these factors are accounted for. Native pumpkinseed in waterbodies containing piscivores mature later and at a larger size, and have lower gonadosomatic indices than those in waterbodies lacking piscivores, whereas there is no significant difference in the same three life-history traits between European waterbodies containing or lacking piscivores. Because congeneric competitors of the pumpkinseed are absent from Europe, the apparent absence of a predator life-history effect there could also be due to the absence of the major sunfish competitors. In either case, the evolution and maintenance of more opportunistic traits in European pumpkinseed can likely be attributed to enemy release, and this may explain the successful establishment and spread of pumpkinseed in many parts of Europe.  相似文献   

3.
4.
Why do animals not grow at their maximal rates? It has been recently proposed that fast growth leads to the accumulation of cellular damages due to oxidative stress, influencing subsequent performances and life span. Therefore, the trade-off between fast growth and oxidative stress may potentially function as an important constraint in the evolution of growth trajectories. We test this by examining a potential antagonistic pleiotropy between growth and blood resistance to controlled free radical attack in a wild bird using a cross-fostering design and robust quantitative genetic analyses. In the yellow-legged gull Larus michahellis, decreased resistance to oxidative stress at age 8 days was associated with faster growth in mass, across the first 8 days of life, suggesting a trade-off between mass growth and oxidative-stress-related somatic maintenance. We found a negative genetic correlation between chick growth and resistance to oxidative stress, supporting the presence of the genetic trade-off between the two traits. Therefore, investment of somatic resources in growth could be constrained by resistance to oxidative stress in phenotypic and genetic levels. Our results provide first evidence for a potential genetic trade-off between life-history and underlying physiological traits in a wild vertebrate. Future studies should explore genetic trade-offs between life-history traits and other oxidative-stress-related traits.  相似文献   

5.
Mammals can be aligned along a slow-fast life-history continuum and a low–high metabolic rate continuum based on their traits. Small non-volant mammals occupy the fast/high end in both continua with high reproductive rates and short life spans linked with high mass-specific metabolic rates. Bats occupy the high end of the metabolic continuum, but the slow end of the life-history continuum with low reproductive rates and long life spans. Typically, both continua are linked, and similar life-history traits of species are reflected in more similar metabolic rates. We therefore hypothesized that metabolic rates are similar in species with similar life-history traits. Resting metabolic rates (RMR) were measured for three ecologically and morphologically similar sympatric bat species (Myotis nattereri, M. bechsteinii, and Plecotus auritus; Vespertilionidae) and compared to data from other similar-sized, temperate insectivorous mammals with other life-history strategies. The bat species share similar life-histories and RMRs, both of which differ from the remaining mammals and therefore supporting our hypothesis. To verify that bats are similar in RMR, two energetically contrasting periods were compared. RMRs in post-lactating females did not differ between bat species. It was, however, positively correlated with parasite load in both Myotis species. However, RMRs differed during energy-demanding pregnancy where M. nattereri had the significantly lowest RMR, suggesting metabolic compensation as an energy-saving strategy. We conclude that the energy requirements of bat species with similar life-history traits resemble each other during periods of low energetic demands and are more similar to each other than to other small temperate mammals.  相似文献   

6.
The close connection between reproductive ecology and life history in snakes leads to trade-offs between reproductive and other life-history traits. Optimal energy allocation to growth and reproduction is a key factor to determine life history structure. Therefore, elucidating the relationship between body size variations and reproductive characters is essential for a better understanding of life-history plasticity. The aim of this work was to determine to what extent life-history differs among populations of Boa constrictor occidentalis and to identify possible life-history trade-offs between morphological and reproductive traits. We compared two populations from areas that are separated latitudinally, with different climatic conditions and vegetation landscape structure. Reproductive and morphological data of specimens were recorded. Although populations had a similar mean length of mature snakes, the frequency of some size classes tended to be different. Size at sexual maturity differed between populations for females, generating variations in the proportion of mature individuals. Reproductive threshold and follicular size also varied, but female reproductive frequency was similar between populations. Reproductive frequency of males varied between populations although their body condition was similar. We discussed two major issues: (1) implications of size at sexual maturity for body size and fecundity; (2) trade-offs in reproductive characters.  相似文献   

7.
1. A simple two-stage population model was applied to data from a previously published life-table response experiment (LTRE), which examined the toxicity of 4- n -nonylphenol to life-history traits of the polychaete Capitella sp. I. Population growth rates ( λ ) and the relative sensitivities (= elasticities) of λ to changes in each of the individual life-history traits were calculated.
2. In the present study, the life-history parameters measured in laboratory-reared individuals were manipulated to simulate potential effects of competition and predation on fecundity, time to reproductive maturity and juvenile survival to explore how such factors might influence the sensitivity of population growth rate to toxicant-caused changes in individual life-history traits.
3. Dramatic changes in elasticity patterns among simulations indicate that population growth rates may respond very differently to toxicant exposure depending on the extent to which other demographically limiting factors (e.g. competitors and/or predators) are operating on the population.
4. Effectively predicting the population-level consequences arising from toxicant effects measured on individuals can be improved by exploring the elasticity pattern of λ for the population over a range of realistic ecological situations.  相似文献   

8.
Life history strategies reflect trade-offs that tend to maximize fitness, such as investment in a few large or many small offspring. We compared life histories of two temperate livebearing fishes Gambusia affinis and G. nobilis, an endangered species which is virtually unstudied. The two species persist in environments that differ widely in abiotic and biotic factors in the same local area. Gambusia affinis were typically found in habitats with high productivity and wide fluctuations in temperature, salinity and dissolved oxygen, whereas G. nobilis occurred in more stable spring-fed habitats. We collected data on life-history traits: embryo mass, brood size (number of embryos), total maternal reproductive effort, population sex ratios, and size (mass and length) distributions of adults and juveniles. There was no difference between species in reproductive effort per brood, but they differed in investment strategy. Gambusia affinis females produced large broods with small embryos, whereas G. nobilis females produced broods of fewer, larger embryos. These differences in life history strategies reflect a tradeoff between individual productivity and differential mortality rates in different environments. At our field site G. affinis persists as an annual species with relatively high growth rates and corresponding reproductive patterns, whereas G. nobilis females have a slower reproductive tempo and may live multiple years.  相似文献   

9.
The trajectory of an animal''s growth in early development has been shown to have long-term effects on a range of life-history traits. Although it is known that individual differences in behaviour may also be related to certain life-history traits, the linkage between early growth or development and individual variation in behaviour has received little attention. We used brief temperature manipulations, independent of food availability, to stimulate compensatory growth in juvenile three-spined sticklebacks Gasterosteus aculeatus. Here, we examine how these manipulated growth trajectories affected the sexual responsiveness of the male fish at the time of sexual maturation, explore associations between reproductive behaviour and investment and lifespan and test whether the perceived time stress (until the onset of the breeding season) influenced such trade-offs. We found a negative impact of growth rate on sexual responsiveness: fish induced (by temperature manipulation) to grow slowest prior to the breeding season were consistently quickest to respond to the presence of a gravid female. This speed of sexual responsiveness was also positively correlated with the rate of development of sexual ornaments and time taken to build a nest. However, after controlling for effects of growth rate, those males that had the greatest sexual responsiveness to females had the shortest lifespan. Moreover, the time available to compensate in size before the onset of the breeding season (time stress) affected the magnitude of these effects. Our results demonstrate that developmental perturbations in early life can influence mating behaviour, with long-term effects on longevity.  相似文献   

10.
11.
Gobies are generally small fishes which play important roles in estuarine ecosystems, yet little attention has been paid to their life-history traits in the western Pacific region. In the present study, the reproductive traits of the dwarf gobies Pandaka trimaculata and Pandaka lidwilli were explored by examining their populations in a subtropical estuary on Okinawa-jima Island, Japan, over 15 months. The Okinawan populations of both species shared similar reproductive traits. Pandaka trimaculata and P. lidwilli exhibited early female maturation at minimum sizes of 8.8 and 9.4 mm standard length (SL), respectively, which indicate that populations of the Pandaka species in the subtropical region represent some of the smallest fishes in the world. Nonetheless, they also had high relative body sizes at maturity relative to the attained asymptotic SLs, ranging from 75.8% to 80.4%, which suggests that their populations are vulnerable to negative impacts. Both the species also had prolonged spawning periods, extending from February to November (P. trimaculata) and from January to October (P. lidwilli), indicating that these local populations have a high potential for maintenance and resilience. Their spawning periods, sizes at maturity and fecundities varied among seasons and latitudes, possibly because of low water temperatures affecting the relative allocation of energy to growth and reproduction. Such plasticity of life-history traits in these small fishes indicates that they would be suitable models for understanding the evolution of life-history strategies and monitoring the responses of organisms to climate change.  相似文献   

12.
The short favorable period of time available for the growth in seasonal environments could constrain the resources allocation between growth and other life-history traits, and the short-term fitness benefits of increased growth rate may prevail over other functions. Accelerated growth rates have been associated with long-term deleterious consequences (e.g., decreased lifespan), and recently oxidative stress (the imbalance between pro-oxidants generation and antioxidant defenses) has been suggested as a mediator of these effects. Here, we examined the impact of elevation on growth rate and self-maintenance parameters (resting metabolism, oxidative damage, and antioxidant defenses) of coal tit chicks (Periparus ater). We predicted that the shorter favorable season at the higher-elevation site could lead to a reallocation of resources towards growth at the expense of self-maintenance processes. We found that chicks at high elevation grew significantly faster in terms of body mass and body size. Chicks from the high-elevation site presented higher resting metabolism, higher oxidative damage level, but similar antioxidant defenses, compared to low-elevation chicks. Interestingly, the chicks exhibiting the better antioxidant defenses at 7 days were also those with the highest resting metabolic rate, and the chicks that grew at the faster rate within the high-elevation site were those with the highest levels of oxidative damage on DNA. Our study supports the idea that increasing elevation leads to a higher growth rate in coal tit chicks, possibly in response to a shorter favorable season. In accordance with life-history theory, a bigger investment in growth was done at the expense of body maintenance, at least in terms of oxidative stress.  相似文献   

13.
Sexual ornaments are predicted to honestly signal individual condition. We might therefore expect ornament expression to show a senescent decline, in parallel with late-life deterioration of other characters. Conversely, life-history theory predicts the reduced residual reproductive value of older individuals will favor increased investment in sexually attractive traits. Using a 25-year dataset of more than 5000 records of breeding collared flycatchers (Ficedula albicollis) of known age, we quantify cross-sectional patterns of age-dependence in ornamental plumage traits and report long-term declines in expression that mask highly significant positive age-dependency. We partition this population-level age-dependency into its between- and within-individual components and show expression of ornamental white plumage patches exhibits within-individual increases with age in both sexes, consistent with life-history theory. For males, ornament expression also covaries with life span, such that, within a cohort, ornamentation indicates survival. Finally, we compared longitudinal age-dependency of reproductive traits and ornamental traits in both sexes, to assess whether these two trait types exhibit similar age-dependency. These analyses revealed contrasting patterns: reproductive traits showed within-individual declines in late-life females consistent with senescence; ornamental traits showed the opposite pattern in both males and females. Hence, our results for both sexes suggest that age-dependent ornament expression is consistent with life-history models of optimal signaling and, unlike reproductive traits, proof against senescence.  相似文献   

14.
An individual based life-history regression setup is introduced not only as an alternative to the ‘reproductive effort model’ in life-history theory, but as a new platform on which the nature of reproductive costs can be explicitly determined and tested under different demographic environmental conditions. Distinctively this regression model is composed of two age-specific features: one is an estimable baseline mortality rate describing the life-history of a population hypothetically undertaking no reproduction, but investing all vital resources into somatic maintenance and growth; the other is a time-dependent covariate encoding dynamic impacts incurred from individual's schedule of reproduction. Regression parameters embedded in the time-dependent covariate explicitly stand for various effects of reproductive costs on future survival relative to the standard described by the baseline mortality rate. Consequently the age-specific mortality is in a compositional structure and gives rise to a wide spectrum of well known mortality curves. Also this compositional structure renders molding forces on senescence by natural selection crucially dependent on patterns of the schedule of reproduction. All numerical evaluations of patterns are performed with two distinct reproductive schedules to illustrate the essential differences from classic results in literature of evolution of life-history.  相似文献   

15.
Synopsis The cost of reproduction is a central concept in theories of life-history evolution. One way to empirically examine the tradeoff between current reproduction and future reproductive prospects is to use natural intraspecific variation in life-history traits. However, this approach is complicated by the sensitivity of life-history traits to variation in the level of resources. We report here an attempt to measure the cost of increasing reproductive activity in populations of female bluehead wrasse,Thalassoma bifasciatum, a coral-reef fish. All of the significant correlations of fecundity and growth rate were positive, in contradiction to the tradeoff predicted by the cost concept. In one of two regions studied, the populations with relatively high mean growth rate had a relatively large mean fecundity. The trait means were also positively associated over time: in months of rapid growth, female reproductive activity was high. Even after removing the effects of habitat and time period in a comparison of individual traits, no growth cost to reproduction appears. Variation in the abundance of resources over space and time is likely to interfere with the measurement of the cost of reproduction in many natural systems.  相似文献   

16.
Despite the recent interest in animal personality and behavioral syndromes, there is a paucity of explanations for why distinct behavioral traits should evolve to correlate. We investigate whether such correlations across apparently distinct behavioral traits may be explained by variation in life history strategy among individual ant colonies. Life history theory predicts that the way in which individuals allocate energy towards somatic maintenance or reproduction drives several distinct traits in physiology, morphology, and energy use; it also predicts that an individual's willingness to engage in risky behaviors should depend on reproductive strategy. We use Temnothorax ants, which have been shown to exhibit ‘personalities’ and a syndrome that may reflect risk tolerance at the colony level. We measure colonies' relative investment in growth rate (new workers produced) compared to reproductive effort (males and queens produced). Comparing sterile worker production to reproductive alate production provides a direct measure of how colonies are investing their energy, analogous to investment in growth versus reproduction in a unitary organism. Consistently with this idea, we found that behavioral type of ant colonies was associated with their life history strategy: risk‐tolerant colonies grew faster and invested more in reproduction, whereas risk‐averse colonies had lower growth rate but invested relatively more in workers. This provides evidence that behavioral syndromes can be a consequence of life‐history strategy variation, linking the two fields and supporting the use of an integrative approach.  相似文献   

17.
Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term studies are especially suited to unravel reproductive allocation strategies. Allocation strategies depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs between different life-history traits. A distinction can be made between capital breeders that fuel reproduction with stored resources and income breeders that use recently acquired resources. In capital breeders, but not in income breeders, energy allocation may be decoupled from energy acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female characteristics) factors during energy storage, vitellogenesis and early gestation on reproductive investment, including litter mass, litter size, offspring mass and the litter size and offspring mass trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated with litter size and mass, but temperature did not affect reproductive investment. With respect to intrinsic factors, litter size and mass were positively correlated with current body size and postpartum body condition of the previous year, but negatively with parturition date of the previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which confirms theoretical predictions. The combined effects of past intrinsic factors and current weather conditions suggest that common lizards combine both recently acquired and stored resources to fuel reproduction. The effect of past energy store points out a trade-off between current and future reproduction.  相似文献   

18.
Predation encounters were staged in the laboratory to compare prey responsiveness, predator error rate, and predator capture success for juvenile cod Gadus morhua (a suction feeder) and herring Clupea harengus (a biting predator) preying on herring and plaice Pleuronectes platessa larvae. Trials were conducted at near natural temperature extremes for the larvae (8 and 13°C) to assess the importance of water temperature to the interaction. Herring larvae were significantly more responsive to attacks by herring than were plaice larvae (5·7 vs 0'0%). The two prey species were equally responsive to attacks by cod (2–6 vs 10%). Cod caught 91% of herring larvae attacked and juvenile herring caught 87%. Cod were successful in 96% of attacks on plaice, but juvenile herring caught significantly fewer (83%) plaice larvae. For each predator species, capture success did not vary significantly with prey species. Overall capture success for herring was significantly lower than that for cod. Responsiveness of herring larvae to attacks by juvenile herring increased with temperature, but predator error rate and capture success were not altered by water temperature.  相似文献   

19.
以青藏高原高寒草甸中三种同域分布的喉毛花为研究对象,通过比较三个种的植株性状和繁殖分配,探讨繁殖分配的种间差异及其与植株个体大小的关系。结果表明:(1)三个种的植株高度、顶花大小和单株花数目、繁殖分配均存在种间差异,这可能与其各自的交配系统和具体的生境以及相应的生活史对策有关;(2)在三种喉毛花中,投入到营养器官和繁殖器官的绝对资源量均呈显著正相关,未检测到植株生长和繁殖间的权衡关系;(3)三个种的个体大小与繁殖器官生物量均呈显著正相关,而与繁殖分配均呈显著负相关,这表明个体越大,繁殖投入越高,而繁殖分配越低,与以往研究结果一致,这可能是由于繁殖分配与个体大小之间存在异速关系。  相似文献   

20.
Age at size was linked to sexual maturity in 77 male and 93 female thorny skates Amblyraja radiata from the western Gulf of Maine using three criteria: 1) gross reproductive morphology, 2) histology and 3) steroid hormone concentrations. Age-bias plots and the coefficient of variation from vertebral band counts suggested that the ageing method represented a non-biased and precise approach to the age assessment of A. radiata . Maturity ogives for males, based on data gathered for clasper length, circulating testosterone concentrations and proportion of mature spermatocysts within the testes, predicted that 50% maturity occurred at a total length ( L T) of 865 mm and c. 10·90 years of age. For females, maturity ogives, based on data gathered for ovary mass, shell gland mass, follicle size and circulating oestradiol concentrations, predicted that 50% maturity occurred at 875 mm L T and c. 11·00 years of age. Collectively, the results suggest that analysis of several contemporaneous reproductive variables offers an accurate determination of sexual maturity in the thorny skate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号