首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The inheritance and biochemical properties of gliadins controlled by the group 1 chromosomes of the high-quality bread wheat cultivar Neepawa were studied in the progeny of the cross Neepawa x Costantino by six different electrophoretic procedures. Chromosome 1B of Neepawa contains two gliadin loci, one (Gli-B1) coding for at least six - or -gliadins, the other (Gli-B3) controlling the synthesis of gliadin N6 only. The map distance between these loci was calculated as 22.1 cM. Amongst the chromosome 1A gliadins, three proteins are encoded at the Gli-A1 locus whereas polypeptides N14-N15-N16 are controlled by a remote locus which recombines with Gli-A1. Six other gliadins are controlled by a gene cluster at Gli-D1 on chromosome 1D. Canadian wheat cultivars sharing the Gli-B1 allele of Neepawa were found to differ in the presence or absence of gliadin N6. The electrophoretic mobilities of proteins N6 and N14-N15-N16 were unaffected by the addition of a reducing agent during two-dimensional sodium dodecyl sulphate polyacrylamid-gel electrophoresis, suggesting the absence of intra-chain disulphide bonds in their structure.Research supported by a grant from the Commission of the European Communities, ECLAIR programme, Contract AGRE 0052  相似文献   

3.
Molecular genetic characterization of the Wx-B1e allele identified by the authors of the study in the common wheat cultivar Korotyshka was performed. The 804-bp Wx-B1e fragment was cloned and sequenced. Comparison of the sequence obtained with that for the wild-type allele of common wheat (Wx-B1a) demonstrated that Wx-B1e carried the 34-bp insertion, 8-bp deletion, and 23 nucleotide substitutions. BLAST analysis revealed the highest homology with the nucleotide sequences of Wx genes from Triticum spelta and Triticum durum. The amplification variants of four Wx-B1 molecular markers, applied worldwide for testing the collections for different Wx allelic variants, are demonstrated.  相似文献   

4.
5.
It has been shown, that in most cases the fertile plants of maternal line and F1 plants of respective hybrid are present among sterile plants of sunflower female lines in crossing plots. As a result, 16 various genotypes of seeds are ascertained in crossing plots at monogenic differences in marker trait. Only two classes are F1 seeds. In such cases specific share of 5 genotype groups may be distinguished by phenotypes of heliantin electrophoregrammes. Seeds of biological admixture may be attributed to the 6th distinguishing type.  相似文献   

6.
Wheat microsatellites (WMS) were used to estimate the extent of genetic diversity among 40 wheat cultivars and lines, including mainly European elite material. The 23 WMS used were located on 15 different chromosomes, and revealed a total of 142 alleles. The number of alleles ranged from 3 to 16, with an average of 6.2 alleles per WMS. The average dinucleotide repeat number ranged from 13 to 41. The correlation coefficient between the number of alleles and the average number of repeats was only slight (r s = 0.55). Based on percentage difference a dendrogram is presented, calculated by the WMS-derived data. All but two of the wheat cultivars and lines could be distinguished. Some of the resulting groups are strongly related to the pedigrees of the appropriate cultivars. Values for co-ancestry (f) of 179 pairs of cultivars related by their pedigrees (f0.1) averaged 0.29. Genetic similarity (GS) based on WMS of the same pairs averaged 0.44. The rank correlation for these pairs was slight, with r s = 0.55, but highly significant (P<0.001). The results suggest that a relatively small number of microsatellites can be used for the estimation of genetic diversity and cultivar identification in elite material of hexaploid bread wheat.  相似文献   

7.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

8.
 Inheritance of low-molecular-weight glutenin subunits (LMW GS) and gliadins was studied in the segregating progeny from several crosses between common wheat genotypes. The occurrence of a few recombinants in the F2 grains of the cross Skorospelka Uluchshennaya×Kharkovskaya 6 could be accounted for by assuming that the short arm of chromosome 1D contains two tightly linked loci each coding for at least one gliadin plus one C-type LMW GS. These loci were found to recombine at a frequency of about 2%, and to be linked to the Glu-D3 locus coding for B-type LMW GS. Some proteins showing biochemical characteristics of D-type or C-type LMW GS were found to be encoded by the Gli-B1 and Gli-B2 loci, respectively. Strongly stained B-type LMW GS in cvs Skorospelka Uluchshennaya and Richelle were assigned to the Glu-B3 locus, but recombination between this locus and Gli-B1 was not found. Analogously, in the cross Bezostaya 1×Anda, no recombination was found between Gli-A1 and Glu-A3, suggesting the maximum genetic distance between these loci to be 0.97% (P=0.05). A B-type LMW GS in cv Kharkovskaya 6 was assigned to the Glu-B2 locus, with about 25% recombination from the Gli-B1 locus. The present results suggested that alleles at Gli loci may relate to dough quality and serve as genetic markers of certain LMW GS affecting breadmaking quality. Received: 9 July 1996/Accepted: 15 November 1996  相似文献   

9.
In plants the marker sequences used to identify chromosomes are mainly repetitive DNA probes. Simple sequence repeats (SSRs) are major components of many plant genomes and could be good markers for chromosome identification. In a previous work, we reported the physical distribution of 4 oligonucleotides, (AG)12, (CAT)5, (AAC)5, and (AAG)5, on Triticum aestivum L. chromosomes. The distinctive distribution pattern found suggested that SSR in situ hybridization is useful as a diagnostic tool in wheat cytogenetics. To check whether that finding is generally applicable, we analyzed the chromosomal distribution of the rest of the 14 possible classes of di- and tri-nucleotide repeats by FISH. A detailed knowledge of the sequence content of hexaploid wheat chromatin was acquired based on the hybridization signals, which also provide a rich set of chromosome markers for chromosome identification. Except for (AT)10 and (GC)10, for which the chromosomal distribution could not be accurately determined, and (AC)8 and (GCC)5, which were found dispersed throughout the chromosomes, the remaining repeats were observed as clusters on specific chromosome sites. (AGG)5, (CAC)5, (ACG)5, (AAT)5, and (CAG)5 exhibited a preferential distribution in the pericentromeric regions of the B genome chromosomes. The richest patterns of intercalary signals on several A and B genome chromosomes were produced by (ACT)5. A karyotype based on the SSR probes providing the best FISH patterns was constructed for T. aestivum 'Chinese Spring'.  相似文献   

10.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   

11.
Molecular Biology Reports - Research activities aiming to investigate the genetic diversity are very crucial because they provide information for the breeding and germplasm conservation activities....  相似文献   

12.
Dan  Xuming  Wang  Chengran  Su  Yanning  Zhang  Ailing  Wang  Ruijia  Khan  Imran  Huang  Linkai 《Molecular biology reports》2020,47(8):5747-5754
Molecular Biology Reports - Seed is an important way to store germplasm resources but its genetic integrity will decrease during long-term preservation. So, it’s essential to update seeds...  相似文献   

13.
Resistance gene analog-expressed sequence tag (RGA-EST)-based markers have been used for variety discrimination and studies of genetic diversity in wheat. Our aim is to increase the competitiveness of public wheat breeding programs through intensive use of modern selection technologies, mainly marker-assisted selection. The genetic diversity of 77 wheat nucleotide binding site (NBS)-containing RGA-ESTs was assessed. Resistant and susceptible bread wheat (Triticum aestivum) genotypes were used as sources of DNA for PCR amplifications. In our previous studies, the F? individuals derived from the combinations PI178383 x Harmankaya99, Izgi2001 x ES14, and Sonmez2001 x Aytin98 were evaluated for yellow rust resistance at both seedling and adult stages to identify DNA markers. We have now examined the genetic variability among the resistant and susceptible Turkish wheat cultivars for yellow rust disease and the mean genetic distance between the cultivars. The highest similarity was 0.500 between Harmankaya99 and Sonmez2001. The lowest similarity was 0.286 between Aytin98, PI178383 and Aytin98, ES14. A relatively high level (49.5%) of polymorphism was observed with 77 RGA-EST primers across the six wheat genotypes, despite the fact that all of them were local cultivars from geographically close locations. RGA-EST sequences were compared by BlastX algorithms for amino acid sequences to determine the polymorphic categories among the combinations. BlastX analyses of six RGA-ESTs that gave polymorphic patterns for all combinations were NBS-LRR class RGA, NB-ARC domain containing protein, NBS-type resistance protein RGC5, NBS-LRR-S/ TPK stem rust resistance protein, and putative MLA1 proteins, while 38 RGA-EST gave a monomorphic pattern.  相似文献   

14.
15.
Deeb N  Lamont SJ 《Animal genetics》2003,34(3):205-212
A unique outbred by inbred F1 resource population was established. The population structure facilitated the unique opportunity of examining gene by genetic background interaction through crossing two modern broiler sires with dams from two unrelated inbred lines, with no selection for growth rate, to produce about 600 F1 chicks. Pools of DNA were generated from the phenotypic extremes (20% high and low) for 8-week body weight for each of the four combinations of sire and dam line. For one sire family, pools were also separately generated for each sex. The pools were genoyped with 25 informative (segregating) microsatellites. This unique F1 cross between outbred and inbred populations allowed use of the inbred alleles as an 'internal control' for polymerase chain reaction amplification quality in DNA pools. Ten microsatellites showed marked differences (P < 0.05) in allele frequencies between high and low pools, suggesting an association between marker and quantitative trait loci (QTL). These differences were verified using selective genotyping. For many markers, differences in allele frequencies between the high and the low pools, or marker effect, varied between the two dam lines and the two sexes, suggesting an interaction between some genes and the genetic background as represented by different dam lines or sexes. The suggestive marker-QTL associations identified in this F1 population demonstrate the efficiency of this population design while different QTL effects in different genetic line crosses and sexes highlight the importance of gene by genetic background interaction in QTL detection.  相似文献   

16.
Kumar  Deepender  Chhokar  Vinod  Sheoran  Sonia  Singh  Rajender  Sharma  Pradeep  Jaiswal  Sarika  Iquebal  M. A.  Jaiswar  Akanksha  Jaisri  J.  Angadi  U. B.  Rai  Anil  Singh  G. P.  Kumar  Dinesh  Tiwari  Ratan 《Molecular biology reports》2020,47(1):293-306

Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder’s Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~?50%), A (~?39%), and D (~?10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon’s information index (I)?=?0.648, expected heterozygosity (He)?=?0.456 and unbiased expected heterozygosity (uHe)?=?0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.

  相似文献   

17.
18.
Genetic variation in six Hungarian common carp (Cyprinus carpio L.) strains was evaluated using 12 microsatellite loci. The domesticated (Tatai, Biharugrai and Szarvasi) strains were derived from fish farms. Two of wild strains (Tiszai and Dunai) were sampled from brood stocks maintained at fish farms for breeding, and Kis-Balatoni wild carp were sampled from the Small Balaton Lake. Pairwise Fst-values (0.013–0.161) were highly significant (p<0.0001), demonstrating differentiation among strains. The mean number of alleles ranged between 3.9 and 8.2. Overall mean observed heterozygosity was lower (0.557) than the mean expected heterozygosity (0.700). By strain, the only exception to this trend was the Dunai (Danubian), which showed higher mean observed heterozygosity (0.764) than expected (0.602). For five loci the Dunai strain showed extremely high levels of heterozygosity (1.00). Two wild strains exhibited a number of loci (Tiszai, 4; Dunai, 6) that were not in Hardy–Weinberg equilibrium. A relatively high number of private alleles overall (n=26), as well as differences in allele frequencies supported our ability to assign most individual fish (over 90%) to each strain.  相似文献   

19.
Genetic variation in six Hungarian common carp (Cyprinus carpio L.) strains was evaluated using 12 microsatellite loci. The domesticated (Tatai, Biharugrai and Szarvasi) strains were derived from fish farms. Two of wild strains (Tiszai and Dunai) were sampled from brood stocks maintained at fish farms for breeding, and Kis-Balatoni wild carp were sampled from the Small Balaton Lake. Pairwise Fst-values (0.013–0.161) were highly significant (p0.0001), demonstrating differentiation among strains. The mean number of alleles ranged between 3.9 and 8.2. Overall mean observed heterozygosity was lower (0.557) than the mean expected heterozygosity (0.700). By strain, the only exception to this trend was the Dunai (Danubian), which showed higher mean observed heterozygosity (0.764) than expected (0.602). For five loci the Dunai strain showed extremely high levels of heterozygosity (1.00). Two wild strains exhibited a number of loci (Tiszai, 4; Dunai, 6) that were not in Hardy–Weinberg equilibrium. A relatively high number of private alleles overall (n=26), as well as differences in allele frequencies supported our ability to assign most individual fish (over 90%) to each strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号