首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypoxia-inducible factor-1 (HIF-1), consisting of two subunits, HIF-1alpha and HIF-1beta, is a key regulator for adaptation to low oxygen availability, i.e., hypoxia. Compared to the constitutively expressed HIF-1beta, HIF-1alpha is regulated by hypoxia but also under normoxia (21% O(2)) by several stimuli, including nitric oxide (NO). In this study, we present evidence that overexpression of mitochondrial-located thioredoxin 2 (Trx2) or thioredoxin reductase 2 (TrxR2) attenuated NO-evoked HIF-1alpha accumulation and transactivation of HIF-1 in HEK293 cells. In contrast, cytosolic-located thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount and activity under NO treatments. Taking into consideration that thioredoxins affect the synthesis of HIF-1alpha by altering Akt/mTOR signaling, we herein show that p42/44 mitogen-activated protein kinase and p70S6 kinase are involved. Moreover, intracellular ATP was increased in Trx1-overexpressing cells but reduced in cells overexpressing Trx2 or TrxR2, providing thus an understanding of how protein synthesis is regulated by thioredoxins.  相似文献   

3.
4.
Mammalian thioredoxin reductase 1 (TrxR1) is considered to be an important anticancer drug target and to be involved in both carcinogenesis and cancer progression. Here, we report that ethaselen, a novel organoselenium compound with anticancer activity, specifically binds to the unique selenocysteine-cysteine redox pair in the C-terminal active site of mammalian TrxR1. Ethaselen was found to be a potent inhibitor rather than an efficient substrate of mammalian TrxR1. It effectively inhibits wild-type mammalian TrxR1 at submicromolar concentrations with an initial mixed-type inhibition pattern. By using recombinant human TrxR1 variants and human glutathione reductase, we prove that ethaselen specifically targets the C-terminal but not the N-terminal active site of mammalian TrxR1. In A549 human lung cancer cells, ethaselen significantly suppresses cell viability in parallel with direct inhibition of TrxR1 activity. It does not, however, alter either the disulfide-reduction capability of thioredoxin or the activity of glutathione reductase. As a downstream effect of TrxR1 inactivation, ethaselen causes a dose-dependent thioredoxin oxidation and enhances the levels of cellular reactive oxygen species in A549 cells. Thus, we propose ethaselen as the first selenium-containing inhibitor of mammalian TrxR1 and provide evidence that selenium compounds can act as anticancer agents based on mammalian TrxR1 inhibition.  相似文献   

5.
Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation   总被引:10,自引:0,他引:10  
Thioredoxin reductase (TrxR) is a flavoprotein that contains a C-terminal penultimate selenocysteine (Sec) and has an ability to reduce thioredoxin (Trx), which regulates the activity of NF-kappa B. To date, three TrxR isozymes, TrxR1, TrxR2, and TrxR3, have been identified. In the present study, we found that among these isozymes only TrxR1 was induced by tumor necrosis factor-alpha (TNF alpha) in vascular endothelial cells. Furthermore, the overexpression of TrxR1 enhanced TNF alpha-induced DNA-binding activity of NF-kappa B and NF-kappa B-dependent gene expression. The catalytic Sec residue of TrxR1, which is essential for reducing Trx, was required for this NF-kappa B activation, and aurothiomalate, an inhibitor of TrxR, suppressed TNF alpha-induced activation of NF-kappa B and the expression of NF-kappa B-targeted proinflammatory genes such as E-selectin and cyclooxygenase-2. These results suggest that TrxR1 may act as a positive regulator of NF-kappa B and may play an important role in the cellular inflammatory response.  相似文献   

6.
The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.  相似文献   

7.
8.
9.
10.
Boyd ND  Chan BM  Petersen NO 《Biochemistry》2002,41(23):7232-7240
Downregulation of several signaling pathways, such as those stimulated by growth factor receptors, occurs by internalization of signaling receptors through clathrin-coated pits. The first step in internalization or endocytosis is interaction with AP-2, which results in coated pit formation by assembly of clathrin to AP-2. Changes in endocytosis are reflected in the distribution of AP-2 molecules at the cell surface. Integrins are receptors which mediate attachment to the extracellular matrix and also stimulate numerous intracellular signaling pathways; however, it is not known how signaling through integrins is terminated or downregulated. Endocytosis through clathrin-coated pits offers an attractive mechanism for this. This work explores the relationship between AP-2 and beta(1) integrins. RD cells grown for 24 h on collagen or laminin exhibit a redistribution of AP-2 to the cell periphery relative to those grown on fibronectin or polylysine. The total AP-2 protein levels in the cells are unaffected. Blocking alpha(1)beta(1) integrin ligand binding on collagen prevents this redistribution fully. On laminin where alpha(1)beta(1) and alpha(6)beta(1) integrins are engaged, both receptors must be simultaneously blocked to prevent AP-2 redistribution, confirming that the redistribution depends on the specific engagement of the receptors. Immunofluorescence reveals that the majority of alpha(1)beta(1) integrins colocalize with alpha(6)beta(1) integrins in linear structures identified as focal adhesions. A separate fraction of alpha(1)beta(1) integrins colocalize with AP-2 in coated pits. Interestingly, alpha(6)beta(1) integrins are not located in coated pits, demonstrating that integrin colocalization with AP-2 is not necessary to induce redistribution of AP-2.  相似文献   

11.
在原核生物中,硒蛋白合成需要tRNA~(Sec) (SelC)与硒代半胱氨酸合成(Sec synthase, SelA)、硒代半胱氨酸特异性延伸因子(Sec-specificelongationfactor,SelB)之间相互作用。【目的】基于大肠杆菌掺硒机器,寻找tRNA~(Sec)骨架上关键核苷酸位点,为解决硒蛋白目前面临的掺硒效率较低、产量低的问题提供新思路。【方法】以大鼠细胞质型硫氧还蛋白还原酶(thioredoxinreductase1,TrxR1)为掺硒模式蛋白为定点突变tRNA~(Sec),转化至BL21 (DE3) gor-获得阳性重组菌株(携带pET-TRSter/pSUABC’),用于表达大鼠硒蛋白TrxR1,然后使用2¢,5¢ADP-Sepharose亲和层析和凝胶过滤两步法分离纯化TrxR1,最后利用经典硒依赖型DTNB还原反应测定TrxR1的酶活,分析关键核苷酸位点,评价掺硒效率。【结果】在存在SECIS元件的前提下,当SelA、SelB、tRNA~(Sec)共表达时,与野生型相比,携带突变型tRNA~(Sec)所共表达的TrxR1酶活力呈现不同程度的降低,其中E.colitRNA~(Sec)的G18、G19这两个位点的所有的TrxR1酶活远低于野生型(10%);然而,a26和b7的酶活相对较高。【结论】E. coli tRNA~(Sec)骨架上G18和G19位点对于维持tRNA稳定性和灵活性发挥了关键作用,位点突变引起tRNA结构变化会影响tRNA~(Sec)与掺硒元件的互作,因此有望通过改造tRNA核苷酸位点来提高硒蛋白的掺硒效率。  相似文献   

12.
13.
14.
Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.  相似文献   

15.
16.
17.
2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx) domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D)), which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD) for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D) cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D) because of following reasons: i) unstable and unfavorable interaction of the linker region, ii) shifted Trx domain, and iii) different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.  相似文献   

18.
The effect of calcium ions has been studied on three different isoforms of thioredoxin reductase. The cytosolic (TrxR1), mitochondrial (TrxR2), and the Escherichia coli enzymes were examined and compared. In our condition, TrxR1 appears extremely sensitive to Ca2+ showing an IC50 of about 160 nM, while Ca2+ exerts only a weak inhibitory effect on the mitochondrial isoform. The thioredoxin reductase purified from E. coli is almost completely insensitive to calcium ions. Circular dichroism analysis of highly purified mitochondrial and cytosolic thioredoxin reductases reveals that Ca2+ induces conformational alterations that are particularly relevant only in the cytosolic isoform. These observations are discussed with reference to the physiological role and, in particular, to the regulatory functions of the thioredoxin system.  相似文献   

19.
20.
Human cytosolic thioredoxin reductase (TrxR), a homodimeric protein containing 1 selenocysteine and 1 FAD per subunit of 55 kDa, catalyses the NADPH-dependent reduction of thioredoxin disulfide and of numerous other oxidized cell constituents. As a general reducing enzyme with little substrate specificity, it also contributes to redox homeostasis and is involved in prevention, intervention and repair of damage caused by H2O2-based oxidative stress. Being a selenite-reducing enzyme as well as a selenol-containing enzyme, human TrxR plays a central role in selenium (patho)physiology. Both dietary selenium deficiency and selenium oversupplementation, a lifestyle phenomenon of our time, appear to interfere with the activity of TrxR. Selenocysteine 496 of human TrxR is a major target of the anti-rheumatic gold-containing drug auranofin, the formal Ki for the stoichiometric inhibition being 4 nM. The hypothesis that TrxR and extracellular thioredoxin play a pathophysiologic role in chronic diseases such as rheumatoid arthritis, Sj?gren's syndrom, AIDS, and certain malignancies, is substantiated by biochemical, virological, and clinical evidence. Reduced thioredoxin acts as an autocrine growth factor in various tumour diseases, as a chemoattractant, and it synergises with interleukins 1 and 2. The effects of anti-tumour drugs such as carmustine and cisplatin can be explained in part by the inhibition of TrxR. Consistently, high levels of the enzyme can support drug resistance. TrxRs from different organisms such as Escherichia coli, Mycobacterium leprae, Plasmodium falciparum, Drosophila melanogaster, and man show a surprising diversity in their chemical mechanism of thioredoxin reduction. This is the basis for attempts to develop specific TrxR inhibitors as drugs against bacterial infections like leprosy and parasitic diseases like amebiasis and malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号