首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
T-cell immunoglobulin domain and mucin domain containing protein 1 (TIM1), also known as a cellular receptor for hepatitis A virus (HAVCR1) or a molecule induced by ischemic injury in the kidney (KIM1), is involved in the regulation of immune responses. We investigated a natural selection history of TIM1 by comparative sequencing analysis in 24 different primates. It was found that TIM1 had become a pseudogene in multiple lineages of the New World monkey. We also investigated T cell lines originated from four different New World monkey species and confirmed that TIM1 was not expressed at the mRNA level. On the other hand, there were ten amino acid sites in the Ig domain of TIM1 in the other primates, which were suggested to be under positive natural selection. In addition, mucin domain of TIM1 was highly polymorphic in the Old World monkeys, which might be under balanced selection. These data suggested that TIM1 underwent a lineage-specific evolutionary pathway in the primates.  相似文献   

3.
4.
5.

Background  

Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes.  相似文献   

6.
Mothers can determine which genotypes of offspring they will produce through selective abortion or selective implantation. This process can, at some loci, favour matching between maternal and offspring genotype whereas at other loci mismatching may be favoured (e.g. MHC, HLA). Genomic imprinting generally renders gene expression monoallelic and could thus be adaptive at loci where matching or mismatching is beneficial. This hypothesis, however, remains unexplored despite evidence that loci known to play a role in genetic compatibility may be imprinted. We develop a simple model demonstrating that, when matching is beneficial, imprinting with maternal expression is adaptive because the incompatible paternal allele is not detected, protecting offspring from selective abortion. Conversely, when mismatching is beneficial, imprinting with paternal expression is adaptive because the maternal genotype is more able to identify the presence of a foreign allele in offspring. Thus, imprinting may act as a genomic ‘cloaking device’ during critical periods in development when selective abortion is possible.  相似文献   

7.
Knight RD  Shimeld SM 《Genome biology》2001,2(5):research0016.1-research00168
Background:Identification of orthologous relationships between genes from widely divergent taxa allows partial reconstruction of the gene complement of ancestral genomes. C2H2 zinc-finger genes are one of the largest and most complex gene superfamilies in metazoan genomes, with hundreds of members in the human genome. Here we analyze C2H2 zinc-finger genes from three taxa - Drosophila, Caenorhabditis elegans and human - from which near-complete genome sequence data are available.Results:Our analyses conclusively identify 39 families of genes, of which 38 can be defined as orthology groups in that they are descended from single ancestral genes in the common ancestor of Drosophila, C. elegans and humans.Conclusions:On the basis of current metazoan phylogeny, these 39 groups represent the minimum complement of C2H2 zinc-finger genes present in the genome of the bilaterian common ancestor.  相似文献   

8.
9.
The evolution of X-linked genomic imprinting   总被引:1,自引:0,他引:1  
Iwasa Y  Pomiankowski A 《Genetics》2001,158(4):1801-1809
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection.  相似文献   

10.
H G Spencer  A G Clark 《Heredity》2014,113(2):112-118
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.  相似文献   

11.
J B Wolf  Y Brandvain 《Heredity》2014,113(2):129-137
Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction—the case of underdominance—imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent''s genome. We illustrate these models and explore key links and differences using a unified framework.  相似文献   

12.
Genomic imprinting of the insulin-like growth factor 2 gene in sheep   总被引:5,自引:0,他引:5  
A number of genes in the human and mouse genomes are subject to genomic imprinting, with selective inactivation of one allele of a gene in a parent-of-origin specific manner. One of the first imprinted genes identified was the Insulin-like Growth Factor 2 gene (IGF2), which promotes growth of the fetus and is expressed from only the paternal allele in most tissues in both the mouse and human. The aim of this study was to establish the imprinting status of IGF2 in sheep (Ovis aries). Sheep provide an interesting model to study imprinting, owing to differences in their placental development and the fact that they have been subject to strong artificial selection for various production traits. We report the identification of a length polymorphism in the transcribed 3′-untranslated region of the ovine IGF2 gene. This polymorphism was used to map IGF2 to sheep Chromosome (Chr) 21 and demonstrate that IGF2 is indeed imprinted in sheep, being expressed from the paternal allele. We also report that the developmental switch from imprinted IGF2 expression in the fetal liver to biallelic IGF2 expression in the adult liver, which occurs in the human but not mouse, also occurs in sheep. Differences in male- and female-specific recombination values reported around the IGF2 locus in the human were also observed around the ovine IGF2 locus. The techniques developed in this study will enable the imprinting status of IGF2 to be assessed in a variety of tissues and stages of development in normal sheep. Received: 3 October 1998 / Accepted 29 January 1999  相似文献   

13.
Imprinted gene identification in animals has been limited to eutherian mammals, suggesting a significant role for intrauterine fetal development in the evolution of imprinting. We report herein that M6P/IGF2R is not imprinted in monotremes and does not encode for a receptor that binds IGF2. In contrast, M6P/IGF2R is imprinted in a didelphid marsupial, the opossum, but it strikingly lacks the differentially methylated CpG island in intron 2 postulated to be involved in imprint control. Thus, invasive placentation and gestational fetal growth are not required for imprinted genes to evolve. Unless there was convergent evolution of M6P/ IGF2R imprinting and receptor IGF2 binding in marsupials and eutherians, our results also demonstrate that these two functions evolved in a mammalian clade exclusive of monotremes.  相似文献   

14.
In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.  相似文献   

15.
Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene.  相似文献   

16.
The EPF family is a group of Cys2/His2zinc-finger proteins in petunia. In these proteins, characteristically long spacer regions have been found to separate the zinc fingers. Our previous DNA-binding studies demonstrated that two-fingered proteins (ZPT2-1 and ZPT2-2), which have spacers of different lengths, bind to two separate AGT core motifs in a spacing specific manner. To investigate the possibility that these proteins might distinguish between the target sequences on the basis of spacing between the core motifs, we screened petunia cDNA library for other proteins belonging to this family. Initial screening by PCR and subsequent cloning of full-length cDNAs allowed us to identify the genes for 10 new proteins that had two, three or four zinc fingers. Among the two-fingered proteins the spacing between zinc fingers varied from 19 to 65 amino acids. The variation in the length of spacers was even more extensive in three- and four-fingered proteins. The presence of such proteins is consistent with our hypothesis that the spacing between the core motifs might be important for target sequence recognition. Furthermore, comparison of diverse protein structures suggests that three- and two-fingered proteins might have resulted due to successive loss of fingers from a four-fingered protein during molecular evolution. We also demonstrate that a highly conserved motif (QALGGH) among the members of EPF family and other Cys2/His2 zinc-finger proteins in plants is critical for the DNA-binding activity.  相似文献   

17.
Parental genomic imprinting is characterized by the expression of a selected panel of genes from one of the two parental alleles. Recent evidence shows that DNA methylation and histone modifications are responsible for this parent-of-origin-dependent expression of imprinted genes. Because similar epigenetic marks have been recruited independently in plants and mammals, the only organisms in which imprinted gene loci have been identified so far, this phenomenon represents a case for convergent evolution. Here we discuss the emerging parallels in imprinting in both taxa. We also describe the significance of imprinting for reproduction and discuss potential models for its evolution.  相似文献   

18.
Genomic imprinting is the differential expression of maternally and paternally inherited alleles of specific genes. Several organismic level hypotheses have been offered to explain the evolution of genomic imprinting. We argue that evolutionary explanations of the origin of imprinting that focus exclusively on the organismic level are incomplete. We propose that the complex molecular mechanisms that underlie genomic imprinting originally evolved as an adaptive response to the mutagenic potential of transposable elements (TEs). We also present a model of how these mechanisms may have been co-opted by natural selection to evolve molecular features characteristic of genomic imprinting.  相似文献   

19.
Endosperm gene imprinting and seed development   总被引:4,自引:0,他引:4  
Imprinting occurs in the endosperm of flowering plants. Endosperm, produced by fertilization of the central cell in the female gametophyte, is essential for embryo and seed development. Several imprinted genes play an important role in endosperm development. The mechanism of gene imprinting involves DNA methylation and histone modification. DNA methylation is actively removed at the imprinted alleles to be activated. Histone methylation mediated by the Polycomb group complex provides another layer of epigenetic regulation at the silenced alleles. Endosperm gene imprinting can be uncoupled from seed development when fertilization of the central cell is prevented. Imprinting may be a mechanism to ensure fertilization of the central cell thereby preventing parthenogenic development of the endosperm.  相似文献   

20.
Intralocus sexual conflict can drive the evolution of genomic imprinting   总被引:4,自引:0,他引:4  
Day T  Bonduriansky R 《Genetics》2004,167(4):1537-1546
Genomic imprinting is a phenomenon whereby the expression of an allele differs depending upon its parent of origin. There is an increasing number of examples of this form of epigenetic inheritance across a wide range of taxa, and imprinting errors have also been implicated in several human diseases. Various hypotheses have been put forward to explain the evolution of genomic imprinting, but there is not yet a widely accepted general hypothesis for the variety of imprinting patterns observed. Here a new evolutionary hypothesis, based on intralocus sexual conflict, is proposed. This hypothesis provides a potential explanation for much of the currently available empirical data, and it also makes new predictions about patterns of genomic imprinting that are expected to evolve but that have not, as of yet, been looked for in nature. This theory also provides a potential mechanism for the resolution of intralocus sexual conflict in sexually selected traits and a novel pathway for the evolution of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号