首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We performed two glasshouse experiments to determine whether the presence of arbuscular mycorrhizal symbiosis reduces the intensity of intraspecific competition at low concentrations of available phosphorus (P), and whether this effect is modified by a reduction in light intensity. In the first experiment, Trifolium subterraneum cv. Mt. Barker was grown at different densities in controlled conditions of light and temperature, and half of the pots were inoculated with spores of the arbuscular mycorrhizal fungus, Gigaspora margarita . In the second experiment, the plants were grown in similar controlled conditions but the light intensity received by half of the pots was reduced by >50%. The biomass and P content of individual mycorrhizal plants and the biomass response to mycorrhizal infection were drastically reduced as plant density increased. The effects of density on percentage infection, shoot and root P concentrations, and root: shoot ratios were inconsistent. Generally reduction in light intensity did not alter these effects. Mycorrhizal symbiosis increased intraspecific competition intensity through an increase in the availability of soil P. This increase in competition was reflected in the greater size inequality of low density mycorrhizal treatments. Our results emphasize that the main effects of mycorrhizas at the individual level cannot be expected to be apparent at the population level, because they are overridden by density-dependent processes.  相似文献   

3.
4.
Genetically engineered pollen with a visible marker gene could be useful to monitor the movement of transgenic pollen provided there are no negative physiological or fitness effects of expressing such a gene. In this study, we measured the fitness of Nicotiana tabacum cv. Xanthi pollen expressing the marker gene green fluorescent protein (GFP). Average pollen tube germination frequencies and pollen tube growth rates in vitro were measured in three different types of plants: (1) plants producing GFP in pollen cells only (LAT59-GFP), (2) plants synthesizing GFP under the control of a constitutive promoter (CaMV 35S) in which no GFP was produced in pollen, and (3) non-transgenic plants. Pollen synthesizing the GFP protein did not differ significantly in average pollen germination frequencies from pollen without GFP (P=0.65). Average pollen tube growth rates over a 5-h period did not differ significantly between transgenic and non-transgenic types (R2=0.89, 0.98, and 0.95, respectively, for GFP-tagged, 35S-GFP, and wild type). Overall, GFP expression in pollen grains of tobacco was not found to have an effect on pollen fitness under the controlled experimental conditions of this study.  相似文献   

5.
Glycinebetaine is an important quaternary ammonium compound generated in response to salt and other osmotic stresses in many organisms. Its synthesis requires the catalysis of betaine aldehyde dehydrogenase encoded by a Betaine Aldehyde Dehydrogenase (BADH) gene that converts betaine aldehyde into glycinebetaine in some halotolerant plants. In this study, a BADH gene was over expressed in transgenic alfalfa (Medicago sativa L) plants using Agrobacterium-mediated transformation. Transgenic alfalfa plants grown under 9‰ NaCl grew well; while non-transgenic control plants turned yellowish in color, wilted, and eventually died. Polymerase chain reaction (PCR) and Northern blot hybridization analyses demonstrated that the BADH gene was transferred into the T2 generation and segregated in a Mendelian fashion. Transgenic alfalfa plants expressing BADH showed significantly higher BADH enzyme activity and betaine contents when grown under 6‰ NaCl. Moreover, proline content in T2 lines were higher while electrolyte leakage and malonaldehyde content were lower in T2 lines compared with non-transgenic plants. These findings indicated that transgenic plants expressing BADH transgene exhibited higher salt tolerance than non-transgenic plants.  相似文献   

6.
7.
Progeny from transgenic broccoli (cv. Green Comet) expressing a Trichoderma harzianum endochitinase gene were used to assess the interaction between endochitinase and the fungicide Bayleton in the control of Alternaria brassicicola. In vitro assays have shown synergistic effects of endochitinase and fungicides on fungal pathogens. Our study examined the in planta effects of endochitinase and Bayleton, individually and in combination. Two month old transgenic and non-transgenic plants were sprayed with ED50 levels of Bayleton and/or inoculated with an A. brassicicola spore suspension. Disease levels in non-sprayed transgenic plants were not statistically different from sprayed transgenic plants nor from sprayed non-transgenic controls. Thus endochitinase-transgenic plants alone provided a significant reduction of disease severity, comparable to the protection by fungicide on non-transgenic plants. Comparison of the expected additive and observed effects revealed no synergism between endochitinase and Bayleton (at ED50 level), and usually less than an additive effect. Some transgenic lines sprayed with fungicide at doses higher than ED50 showed resistance similar to the non-sprayed transgenic lines, again suggesting no synergistic effect. Lack of synergism may be due to incomplete digestion of the cell wall by endochitinase, so that the effect of Bayleton at the cell membrane is not enhanced.  相似文献   

8.
Four field experiments were sown with AMV‐infected or healthy seed of burr medic (Medicago polymorpha) and grazed by sheep; two were sown with cv. Circle Valley and two with cv. Santiago. Seed‐infected plants acted as primary sources for virus spread by naturally occurring aphids. Insecticides and admixture with annual ryegrass (Lolium rigidum), a non‐host of AMV, suppressed virus spread to different extents in the plots sown with infected seed. Effects of the different amounts of virus spread obtained on overall concentration of the oestrogenic compound coumestrol (dihydroxycoumestan) in dry stems and pods, and on seed production were measured in the medic. With cv. Santiago, stem and pod coumestrol concentration values for plots sown with healthy seed were significantly smaller than those for all plots sown with infected seed regardless of whether they were sprayed. With cv. Circle Valley, the coumestrol values for stems from plots sown with healthy seed were significantly smaller than those for unsprayed plots sown with infected seed but not than those for sprayed plots or ones with grass admixtures, and there were no significant differences with pods. There was always a significant positive relationship between concentration of coumestrol in medic stems and percentage AMV infection of swards; this was also so with pods in two experiments. A linear model best fitted this relationship with cv. Circle Valley but a logarithmic model did so with cv Santiago. In glasshouse grown plants, the coumestrol content of dried medic shoots was increased 11 (cv. Circle Valley) and five (cv. Santiago) times by AMV infection. AMV increased mean coumestrol concentrations up to 256 ppm (field) and 237 ppm (glasshouse) in stems and 223 ppm in pods (field). Sowing healthy seed in new pasture swards was an effective strategy for minimising coumestrol accumulation in burr medic swards. Two, but not single, applications of a newer generation pyrethroid insecticide to swards in which AMV was spreading significantly diminished coumestrol accumulation but applying organophosphorus insecticide twice and carbamate insecticide repeatedly did not. Medic seed yields and individual seed weights were sometimes significantly increased by the treatments, suppression of AMV spread by regular carbamate sprays being sufficient to increase seed yield by 55%.  相似文献   

9.
Trifolium subterraneum (cv. Dinninup) responds to enriched atmospheric CO2 in a manner similar to that described by Madsen (1968 and 1976) for tomato. In immature leaves, the total chlorophyll content per unit dry weight and the chlorophyll a:b ratio are significantly lower in plants grown at 0.10 vol% CO2. Although fully expanded mature leaves partially overcome the deficit in chlorophyll content, the chlorophyll a:b ratio remains substantially lower in these high CO2 grown plants. The large amount of starch accumulated as irregularly shaped grains appears to disrupt normal chloroplast structure in clover plants grown in enriched atmospheric CO2. These results indicate the chlorotic appearance of leaves from high CO2 grown clover plants is due to a decrease in chlorophyll content per dry weight possibly resulting from large starch grains and starch accumulation altering normal chloroplast structure and function.  相似文献   

10.
11.
We have developed a rapid and reproducible transformation system for subterranean clover (Trifolium subterraneum L.) using Agrobacterium tumefaciens-mediated gene delivery. Hypocotyl segments from seeds that had been allowed to imbibe were used as explants, and regeneration was achieved via organogenesis. Glucose and acetosyringone were required in the co-cultivation medium for efficient gene transfer. DNA constructs containing four genes encoding the enzymes phosphinothricin acetyl transferase, [beta]-glucuronidase (GUS), neomycin phosphotransferase, and an [alpha]-amylase inhibitor were used to transform subterranean clover. Transgenic shoots were selected on a medium containing 50 mg/L of phosphinothricin. Four commercial cultivars of subterranean clover (representing all three subspecies) have been successfully transformed. Southern analysis revealed the integration of T-DNA into the subterranean clover genome. The expression of the introduced genes has been confirmed by enzyme assays and northern blot analyses. Transformed plants grown in the glasshouse showed resistance to the herbicide Basta at applications equal to or higher than rates recommended for killing subterranean clover in field conditions. In plants grown from the selfed seeds of the primary transformants, the newly acquired gene encoding GUS segregated as a dominant Mendelian trait.  相似文献   

12.
The photosynthesis of ryegrass leaves grown in a simulated sward   总被引:2,自引:0,他引:2  
Plants were taken from simulated swards of perennial ryegrass (Lolium perenne) grown in a controlled environment and the rates of photosynthesis of the youngest fully expanded leaves, and the second and third youngest leaves on the same tillers were measured. The youngest leaves had the highest rates and the third the lowest, with the second leaves intermediate. The rate of photosynthesis in bright light of successive youngest expanded leaves decreased as the swards increased in leaf area, but did not when plants were grown so that the main stem was not shaded. When plants were grown at different densities and the photosynthetic rates of leaves of a particular ontogenetic rank were measured, it was found that leaves on plants from higher densities had lower rates of photosynthesis. Also leaves on plants grown in bright light had higher photosynthetic rates than those on plants grown in dim light. It is concluded that the decline in the photosynthetic capacity of successive leaves in a rapidly growing simulated sward is due to the intense shading to which they are subjected during their expansion.  相似文献   

13.
Competitive ability of transgenic oilseed rape transformed with a pea lectin gene was estimated by comparisons of its performance when grown in a mixture with its non-transgenic counterpart and when grown singly, with and without pollen beetles present. The experiments were carried out in cages, once with bumblebees as pollinators and once without. In the absence of herbivory but with the presence of bumblebees, singly grown plant lines without lectin generally performed better than lines with lectin. Pollen beetles affected plant growth and reproduction, but there were no consistent differences between the lectin and non-lectin plant lines indicating that the transgenic trait did not protect plants from pest attack. Herbivory reduced the number of seeds when bumblebees were present. In the absence of bumblebees, however, plants produced more seeds with pollen beetles than without, indicating that some pollination was carried out by the beetles. Efficient pollination affected the competitive abilities of the lines; lectin lines were more competitive with bumblebees present and the reverse was true when bumblebees were absent. In the presence of bumblebees, lectin lines gained from being grown mixed with its non-transgenic counterpart. Because the transgenic plants expressed pea lectin in developing pollen it is possible that pollen quality in those plants was reduced, which may explain why the lectin lines had an advantage over non-lectin lines when exchange of pollen between the two plant types was facilitated by bumblebees.  相似文献   

14.
We generated transgenic tall fescue (Festuca arundinacea Schreb. cv. Kentucky-31) plants harboring a synthetic Myxococcus xanthus protoporphyrinogen oxidase (MxPPO) gene through Agrobacterium-mediated gene transfer. Successful integration of the transgene into the genome of transgenic plants confirmed by polymerase chain reaction (PCR) and Southern blot analysis, and the functional expression of the MxPPO gene at the mRNA level in transgenic lines was validated by Northern blot analysis. Responses of transgenic and non-transgenic tall fescue plants to diphenyl-ether herbicides such as oxyfluorfen and acifluorfen have been evaluated in respect of various physiological and biochemical parameters. Differential responses were observed in chlorophyll content, in vivo H2O2 deposition and lipid peroxidation in both transgenic and non-transgenic plants exposed to oxyfluorfen or acifluorfen. Isozyme profiles of four antioxidant-enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), were also investigated in transgenic and non-transgenic plants using native PAGE analysis. Compared to the transgenic lines, higher staining activities of the examined antioxidant-enzymes observed in non-transgenic plants subjected to 100 μM of oxyfluorfen or acifluorfen suggests that non-transgenic plants are unable to prevent the photodynamic induced oxidative stress caused by herbicides. In addition, both transgenic and non-transgenic plants exposed to oxyfluorfen exhibited proportionally increased band-staining patterns in contrast to acifluorfen, which suggests that oxyfluorfen has relatively greater or more rapid effects on leaves than acifluorfen. Both Ki-Won Lee and Nagib Ahsan have contributed equally to this work.  相似文献   

15.
Radi A  Dina P  Guy A 《Plant cell reports》2006,25(4):297-303
We have developed a simple genetic engineering strategy for conferring resistance against parasitic weeds on host plants. Transgenic tomato plants expressing the sarcotoxin IA gene were grown either in polyethylene bags (PE) or in pots inoculated with Orobanche aegyptiaca seeds. The results indicate that transgenic plants exhibited strong inhibition of parasite growth and significantly increased yield as compared with non-transgenic ones. In both PE and pot systems most of the parasite tubercles attached to the transgenic root plants turned necrotic and developed abnormally. Integration and expression of the gene were confirmed by Southern blot, RT-PCR and Western blot analysis. Our results indicate that the insect gene produced in the plant cells was selectively toxic to the parasite and non-toxic to the host plant.  相似文献   

16.
Fourteen genetically modified lines of alfalfa (Medicago sativa) containing the gene Ov from Japanese quail, coding for a methionine-rich protein ovalbumin, were evaluated for nodulation ability and concentration of aerobic bacteria in the rhizosphere. The transgenic lines were derived from a highly regenerable genotype Rg9/I-14-22, selected from cv. Lucia. On selective media, a higher concentration of ammonifying bacteria, bacterial spores, denitrifying and nitrifying bacteria were observed in the rhizosphere of transgenic clonesand, on the other hand, lower concentration of cellulolytic bacteria and Azotobacter spp. compared with the rhizosphere of non-transgenic clone SE/22-GT2. A statistically significant difference in the concentration of all the bacterial types was found between samples taken from two types of substrates (i.e. sterile vs. nonsterile). Higher bacterial concentration (measured as colony forming units per g soil dry mass) were observed for all tested groups of culturable bacteria in the non-sterile substrate. The presence of Azotobacter spp. was found only in the rhizosphere of plants grown in non-sterile soil in which the highest number of fertile soil particles (97 %) was observed in transgenic clones SE/22-9-1-12 and SE/22-11-1-1S.1. Concentration of bacteria involved in the N cycle in the soil was increased in the rhizosphere of transgenic clones and decreased in the rhizosphere of non-transgenic plants compared with the average value. In spite of some differences in colony numbers in samples isolated from the root rhizosphere of transgenic and nontransgenic alfalfa plants, we could not detect any statistically significant difference between individual lines.  相似文献   

17.
The aim of this study was to evaluate the effect of transgenic alfalfa (Medicago sativa L.) plants, in comparison to their non-transgenic counterpart, on the density and physiological profiles of aerobic bacteria in the rhizosphere. Plants of transgenic alfalfa expressing the AMVcp-s gene coding for Alfalfa Mosaic Virus coat protein were cultivated in a climatic chamber. Two methods were used to determine the microbial diversity in rhizospheres of transgenic plants. First, the cultivation-dependent plating method, based on the determination of the density of colony-forming bacteria, and second, a biochemical method using the Biolog™ system, based on the utilization of different carbon sources by soil microorganisms. Statistically significant differences in densities of rhizospheric bacteria between transgenic and non-transgenic alfalfa clones were observed in ammonifying bacteria (GTL4/404-1), cellulolytic bacteria (GTL4/404-1, GTL4/402-2, A5-3-3), rhizobial bacteria (GTL4/402-2), denitrifying bacteria (A5-3-3) and Azotobacter spp. (GTL4/402-2). The highest values of substrate utilization by microbial communities and average respiration of C-sources were determined in non-transgenic alfalfa plants of the isogenic line SE/22-GT2. Carbohydrates, carboxylic acids and amino-acids were the most utilized carbon substrates by both Gram-negative and Gram-positive bacteria. Both, the community metabolic diversity and the utilization of C-sources increased in all alfalfa lines with culture time and regardless of transgenic or non-transgenic nature of lines.  相似文献   

18.
19.
Importance of seed Zn content for wheat growth on Zn-deficient soil   总被引:10,自引:2,他引:8  
Seed nutrient reserves may be important for an early establishment of crops on low-fertility soils. This glasshouse pot study evaluated effects of seed Zn content on vegetative growth of two wheat (Triticum aestivum L.) genotypes differing in Zn efficiency. Low-Zn (around 250 ng Zn per seed) and high-Zn seed (around 700 ng Zn per seed on average) of Excalibur (Zn efficient) and Gatcher (Zn inefficient) wheats were sown in a Zn-deficient siliceous sand fertilised with 0, 0.05, 0.2, 0.8 or 3.2 mg Zn kg-1 soil. After 3 weeks, plants derived from the high-Zn seed had better root and shoot growth; the cv. Excalibur accumulated more shoot dry matter than the cv. Gatcher. After 6 weeks, greater root and shoot growth of plants grown from the high-Zn seed compared to those from the low-Zn seed was obvious only at nil Zn fertilisation. A fertilisation rate of 0.2 mg Zn kg-1 soil was required for achieving 90% of the maximum yield for plants grown from the high-Zn seed compared to 0.8 mg Zn kg-1 soil for plants derived from the low Zn seed. The critical Zn level in youngest expanded leaves for 90% maximum yield was 16 mg Zn kg-1 dry matter for both genotypes. Zn-efficient Excalibur had greater net Zn uptake rates compared to Zn-inefficient Gatcher after 3 weeks but they were not different at the 6-week harvest. Zinc-deficient plants had greater net uptake rates of Cu, Mn, B, P, and K but a reduced uptake rate of Fe. It is concluded that higher seed Zn content acted similar to a starter-fertiliser effect by improving vegetative growth and dissipating differences in Zn efficiency of wheat genotypes.  相似文献   

20.
To analyze the physiological role of dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants expressing a human DHAR gene in chloroplasts were biochemically characterized and tested for responses to various stresses. Fully expanded leaves of transgenic plants had about 2.29 times higher DHAR activity (units/g fresh wt) than non-transgenic (NT) plants. Interestingly, transgenic plants also showed a 1.43 times higher glutathione reductase activity than NT plants. As a result, the ratio of AsA/DHA was changed from 0.21 to 0.48, even though total ascorbate content was not significantly changed. When tobacco leaf discs were subjected to methyl viologen (MV) at 5 mumol/L and hydrogen peroxide (H2O2) at 200 mmol/L, transgenic plants showed about a 40% and 25% reduction in membrane damage relative to NT plants, respectively. Furthermore, transgenic seedlings showed enhanced tolerance to low temperature (15 degrees C) and NaCl (100 mmol/L) compared to NT plants. These results suggest that a human derived DHAR properly works for the protection against oxidative stress in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号