首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Crosslink repair of mitomycin C-induced interstrand crosslinks was studied in exponentially growing and confluent normal human, transformed WI38CT-1, Fanconi's anemia (FA) and xeroderma pigmentosum (XP) group-A fibroblasts by the assay methods of alkaline sucrose centrifugation, hydroxyapatite column chromatography and S1-nuclease digestion. These three methods demonstrated unequivocally that crosslinking occurred at a rate of 0.13 crosslinks/108 Da per μg per ml mitomycin C ( 10 μg/ml) and the first half-excision of crosslinks followed the rapid first-order kinetics of 2–3 h half-life in exponentially-growing normal, WI38CT-1 and XP group-A cells. However, the first half-excision was completely defective in three out of the four FA strains tested and severely retarded in an FA strain. These results strongly support our previous observations in different strains of normal human, FA and XP group-A cells. An important new addition is that confluent, otherwise proficient, normal and XP cells almost completely lost the ability of the first, rapid half-excision of mitomycin C crosslinks in their DNA. This probably suggests that the enzyme or regulatory factor responsible for the half-excision, which differs from that for nucleotide excision repair, present constitutively in confluent cells, may be induced or activated only in the cycling cells. However, its relation to a defective FA factor is not clear at present.  相似文献   

2.
Crosslink repair of mitomycin C-induced interstrand crosslinks was studied in exponentially growing and confluent normal human, transformed W138CT-1, Fanconi's anemia (FA) and xeroderma pigmentosum (XP) group-A fibroblasts by the assay methods of alkaline sucrose centrifugation, hydroxyapatite column chromatography and S1-nuclease digestion. These three methods demonstrated unequivocally that crosslinking occurred at a rate of 0.13 crosslinks/10(8) Da per microgram per ml mitomycin C (less than or equal to 10 micrograms/ml) and the first half-excision of crosslinks followed the rapid first-order kinetics of 2-3 h half-life in exponentially-growing normal, WI38CT-1 and XP group-A cells. However, the first half-excision was completely defective in three out of the four FA strains tested and severely retarded in an FA strain. These results strongly support our previous observations in different strains of normal human, FA and XP group-A cells. An important new addition is that confluent, otherwise proficient, normal and XP cells almost completely lost the ability of the first, rapid half-excision of mitomycin C crosslinks in their DNA. This probably suggests that the enzyme or regulatory factor responsible for the half-excision, which differs from that for nucleotide excision repair, present constitutively in confluent cells, may be induced or activated only in the cycling cells. However, its relation to a defective FA factor is not clear at present.  相似文献   

3.
Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins.  相似文献   

4.
DNA repair synthesis and strand break DNA repair induced by 4-nitroquinoline-1-oxide and UV-irradiation in Xeroderma pigmentosum lymphocytes and fibroblasts pretreated by leucocyte interferons were studied. Stimulation of DNA repair synthesis in interferon-pretreated Xeroderma pigmentosum cells, defective in incision, was detected. No such effect was noted for strand break DNA repair. Hence, antimutagenic activity of interferons in human cells is connected with their modificating effect on DNA repair.  相似文献   

5.
The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimerspecific endonuclease V of bacteriophage T4. The results were consistent with the data reported by Mansbridge and Hanawalt (1983) and suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts we observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in transcribing regions of the genome.  相似文献   

6.
7.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

8.
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.  相似文献   

9.
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.  相似文献   

10.
We used the bromouracil-photolysis technique to estimate the sizes of the repaired regions in normal human and xeroderma pigmentosum (XP) cells irradiated by gamma-rays aerobically or anoxically. After 1 1/2 hours of incubation, single-strand breaks were repaired and the repaired regions were small--one to two BrUra residues--for cells irradiated aerobically or anoxically. After a 20-hour incubation, the repaired region in normal cells showed a component mimicking U.V.-repair. There were large patches (approximately 30 BrUra residues) in the approximate ratios of one per six chain breaks for aerobic irradiation and one per three chain breaks for anoxic irradiation. XP cells, however, only showed large patches at 20 hours if they had been irradiated aerobically. We could not detect such regions in XP cells irradiated anoxically. These results indicate (1) that some part of ionizing damage mimics excision of U.V. damage in that the repair patches are large and the repair takes an appreciable time; (2) the types of such damage depend on whether the irradiation is done aerobically or anoxically; and (3) XP cells are defective in repairing a component of anoxic damage.  相似文献   

11.
Unique DNA repair properties of a xeroderma pigmentosum revertant.   总被引:10,自引:3,他引:10       下载免费PDF全文
A group A xeroderma pigmentosum revertant with normal sensitivity was created by chemical mutagenesis. It repaired (6-4) photoproducts normally but not pyrimidine dimers and had near normal levels of repair replication, sister chromatid exchange, and mutagenesis from UV light. The rate of UV-induced mutation in a shuttle vector, however, was as high as the rate in the parental xeroderma pigmentosum cell line.  相似文献   

12.
We find that rapidly proliferating fibroblasts from xeroderma pigmentosum complementation group C (XP-C) patients, cells that have a small residual DNA excision repair capacity, repair DNA in localized regions of the genome in a clustered pattern rather than at single sites in dispersed locations. This finding is similar to that observed earlier for nondividing cells but is in contrast to published results that indicate that the residual repair in proliferating XP-C cells is dispersed throughout the genome in a non-clustered pattern. While we detect the same amount of repair in both proliferating and nondividing cells, we also observe no shift from the clustered pattern of repair to a more dispersive pattern when nondividing cells are stimulated to proliferate by fresh serum addition. We have no obvious explanation for these discrepancies with the published results. We have noted previously that proliferating XP-C cells are very UV sensitive relative to normal cells while nondividing cells that exhibit the same amount of repair activity are relatively UV resistant. There is no satisfactory explanation for this change in relative response to the lethal effects of UV, a change not observed for cell strains from other XP complementation groups. However, we argue that clustered repair in specific genomic regions promotes survival in nondividing XP-C cells but does not promote survival in proliferating cells.  相似文献   

13.
Excision repair in xeroderma pigmentosum group C cells occurs at about 20-30% of normal levels. In confluent fibroblasts a unique characteristic of this low repair is that it is clustered, representing very efficient repair in a small region of the genome. In SV40-transformed fibroblasts and Epstein-Barr virus-transformed lymphocytes of complementation group C, however, excision repair is randomly distributed. This may be a consequence of the high rate of proliferation of both of these cell types, because random repair is also observed in rapidly proliferating group C fibroblasts. The distribution of sites that can be mended in group C cells, therefore, varies according to the transformed and proliferative state of the cells, demonstrating that transformed cells do not always exhibit repair characteristics identical to those of primary fibroblasts.  相似文献   

14.
DNA-dependent ATPase activities in crude extracts prepared from HeLa cells were separated into five peaks by fast protein liquid chromatography Mono Q column chromatography. Similar elution profiles were observed with the extracts from human cells normal in repair and xeroderma pigmentosum cells belonging to complementation groups A through G except for group C. An alteration in elution of one of the five ATPases, designated DNA-dependent ATPase Q1, was observed with a cell line of complementation group C. This alteration was observed with all tested cell lines that belonged to group C. ATPase Q1 in HeLa cell extracts exhibited about 2-fold higher activity with ultraviolet light-irradiated DNA as compared to that with non-irradiated DNA, whereas little difference in the effects of two DNAs was observed with the ATPase activities in the extract from group C cells.  相似文献   

15.
16.
Cleaver JE 《DNA Repair》2004,3(2):183-187
Most forms of the human hereditary disease xeroderma pigmentation (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

17.
Because of defective nucleotide excision repair of ultraviolet damaged DNA, xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers. Cell fusion studies have identified seven XP complementation groups, A to G. Previous studies have implicated the products of these seven XP genes in the recognition of ultraviolet-induced DNA damage and in incision of the damage-containing DNA strand. Here, we express the XPG-encoded protein in Sf9 insect cells and purify it to homogeneity. We demonstrate that XPG is a single-strand specific DNA endonuclease, thus identifying the catalytic role of the protein in nucleotide excision repair. We suggest that XPG nuclease acts on the single-stranded region created as a result of the combined action of the XPB helicase and XPD helicase at the DNA damage site.  相似文献   

18.
19.
The influence of nucleosome structure on the activity of 2 chromatin-associated DNA endonucleases, pIs 4.6 and 7.6, from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined on DNA containing either psoralen monoadducts or cross-links. As substrate a reconstituted nucleosomal system was utilized consisting of a plasmid DNA and either core (H2A, H2B, H3, H4), or total (core plus H1) histones from normal or XPA cells. Both non-nucleosomal and nucleosomal DNA were treated with 8-methoxypsoralen (8-MOP) plus long-wavelength ultraviolet radiation (UVA), which produces monoadducts and DNA interstrand cross-links, and angelicin plus UVA, which produces monoadducts. Both normal endonucleases were over 2-fold more active on both types of psoralen-plus-UVA-damaged core nucleosomal DNA than on damaged non-nucleosomal DNA. Addition of histone H1 to the system reduced but did not abolish this increase. By contrast, neither XPA endonuclease showed any increase on psoralen-treated nucleosomal DNA, with or without histone H1. Mixing the normal with the XPA endonucleases led to complementation of the XPA defect. These results indicate that interaction of these endonucleases with chromatin is of critical importance and that it is at this level that a defect exists in XPA endonucleases.  相似文献   

20.
Methylmethanesulphonate has been shown to stimulate an intensive unscheduled DNA synthesis in lymphocytes derived from normal donors as well as in those from patients with xeroderma pigmentosum of the classical form. Somewhat less intensive unscheduled DNA synthesis was observed in cells of a patient suffering from xeroderma pigmentosum. In the case of XPII unscheduled DNA synthesis was greatly reduced which supports the peculiarity of this form of xeroderma pigmentosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号