首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anaerobic degradation of the polyesterspoly-3-hydroxybutyrate (PHB) andpoly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) wasinvestigated with special regard to intermediateproducts, kinetics, and yields. During the degradationof PHBV acetate, propionate, n-butyrate, andn-valerate were detected. Additionally,3-hydroxybutyrate and 3-hydroxyvalerate and fourdimeric esters of these two molecules were identifiedby GC-MS measurements. Three different test systemsfor the anaerobic degradation of polyesters werestudied. It was not possible to get reproducibleresults by means of the Anaerobic Sturm-test, a simplesystem based on carbon dioxide measurement. Secondly,a system based on the GC measurement of accumulatedorganic acids was investigated. A degradation of 90%in two days was calculated by a carbon balance. Bestresults were reached with the third test system basedon the measurement of methane with a gas meter. Adegradation of 99% was observed within 30 days.  相似文献   

2.
3.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The potential use of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) copolymer as a biodegradable additive in polypropylene (PP) has been explored. The melt blending technique was used to produce the blend of PHBV/PP (PB10). The degradation studies of PB10 were done in the field as well as in controlled laboratory conditions. The structural changes were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). SEM micrographs showed the formation of agglomerates, pits, grooves, and holes on the treated films as a result of microbial activity. FTIR spectra indicated clear evidences of oxo-biodegradation of polymer chains due to an increase in carbonyl peak index. Thermogravimetric analysis confirmed that the thermal stability of PB10 was increased after soil burial. This study contributed toward the prospective commercial applications of PHBV for use in the food packaging industry.  相似文献   

6.
3-Hydroxybutyrate-3-hydroxyvalerate (3HB-3HV) as well as 3-hydroxybutyrate-4-hydroxybutyrate (3HB-4HB) copolyesters have been investigated by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical spectroscopy, over a wide range of compositions (0-95 mol% 3HV; 0-82 mol% 4HB). Both series of isolated copolyesters are partially crystalline at all compositions. Quenched samples show a glass transition that decreases linearly with increasing co-monomer molar fraction, more markedly when the co-monomer is 4HB. Above Tg, all copolyesters, rich in 3HB units, show a cold crystallization phenomenon followed by melting, while at the other end crystallization on heating is observed only in 3HB-3HV copolymers. The viscoelastic spectrum, strongly affected by thermal history, shows two relaxation regions: the glass transition, whose location depends on copolymer type and composition, and a secondary dispersion region at low temperatures (-130/-80 degrees C). The latter results from a water-related relaxation analogous to that of P(3HB) and, in 3HB-4HB copolymers, from another overlapping absorption peak centered at -130 degrees C, attributed to local motion of the methylene groups in the linear 4HB units.  相似文献   

7.
4-Hydroxybutyrate (4HB) was produced by Aeromonas hydrophila 4AK4, Escherichia coli S17-1, or Pseudomonas putida KT2442 harboring 1,3-propanediol dehydrogenase gene dhaT and aldehyde dehydrogenase gene aldD from P. putida KT2442 which are capable of transforming 1,4-butanediol (1,4-BD) to 4HB. 4HB containing fermentation broth was used for production of homopolymer poly-4-hydroxybutyrate [P(4HB)] and copolymers poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-4HB)]. Recombinant A. hydrophila 4AK4 harboring plasmid pZL-dhaT-aldD containing dhaT and aldD was the most effective 4HB producer, achieving approximately 4 g/l 4HB from 10 g/l 1,4-BD after 48 h of incubation. The strain produced over 10 g/l 4HB from 20 g/l 1,4-BD after 52 h of cultivation in a 6-L fermenter. Recombinant E. coli S17-1 grown on 4HB containing fermentation broth was found to accumulate 83 wt.% of intracellular P(4HB) in shake flask study. Recombinant Ralstonia eutropha H16 grew to over 6 g/l cell dry weight containing 49 wt.% P(3HB-13%4HB) after 72 h.  相似文献   

8.
S Slater  T Gallaher    D Dennis 《Applied microbiology》1992,58(4):1089-1094
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

9.
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

10.
Aims: This study sought to develop a less expensive medium for growth of the polyhydroxyalkanoate-producing bacterium Rhodospirillum rubrum from the ethanol production coproduct, condensed corn solubles (CCS). Methods and Results: Small-scale trials using R. rubrum were performed in aerated or anaerobic stoppered serum bottles filled with media. The CCS (240 g l−1) achieved a maximum cell density and growth rate comparable with the defined supplemented malate-ammonium medium (mSMN) or tryptic soy broth. Microaerophilic solubles medium cultures exhibited significantly higher maximum cell densities and growth rates than did strictly anaerobic cultures; while illumination, nickel or biotin addition had no effect. Growth of R. rubrum in a pH controlled bioreactor was significantly better in CCS (240 g l−1) than in mSMN medium and supported production of 0·36% (cell dry weight) poly-(3-hydroxybutyrate-Co-3-hydroxyvalerate) after 24 h. Conclusions: A CCS medium was devised that supported R. rubrum growth for biopolymer production as effective as the defined medium. Significance and Impact of the Study: This study demonstrates that a more economical medium can be developed for biopolymer production using a low value coproduct from ethanol production. The impact is that this inexpensive solubles medium may make it more economical to produce the biopolymer on a commercial scale.  相似文献   

11.
Mutants of Burkholderia sp. that are unable to grow on propionic acid (prp) but still accumulate P3HB-co-3HV from carbohydrate and propionic acid were studied. In shaken flask tests, yields of 3HV from propionic acid (Y(3HV/Prop)) increased from 0.10 g g(-1) in the wild type to c.a. 0.35 g g(-1) in mutants affected in alpha-oxidation pathway or to 0.80 g g(-1) in mutants not affected in that pathway. In bioreactor tests, mutant IPT 189 showed Y(3HV/Prop) = 1.20 g g(-1), a yield very close to the theoretical maximum of 1.35 g g(-1). Accumulation of 3HV units from unrelated carbon sources was undetectable in these mutants indicating that 3HV units are produced directly from propionic acid. Thus, the industrial use of those mutants to produce the copolymer from sucrose and propionic acid could significantly reduce the production costs. The results strongly suggest the existence of at least two pathways that are involved in the oxidation of propionic acid in Burkholderia sp. Their rates would be modulated by the availability of propionic acid.  相似文献   

12.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

13.
For the purpose of denitrification in small drinking water plants, a bacterial mixed population was isolated from a packed bed column bioreactor with poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P(HB-co-HV)) as a substrate for the denitrification of ground water (10 degrees C). Isolates 2nIII from the mixed culture, with the ability to denitrify and metabolize P(HB-co-HV), were used as starter cultures for the elimination of nitrate in ground water. The strains were characterized by diverse techniques. Classical phenotypic studies lead to rRNA group III of the genus Pseudomonas. Results obtained by molecular techniques demonstrated that the 2nIII strains are members of the Comamonadaceae and shows similarities to the genus Acidovorax. However, an integration of the 2nIII isolates within one of the known Acidovorax species is not possible for the moment. The 2nIII starter cultures clustered close to Av. temperans according to their whole cell proteins and fatty acids, whereas in DNA/DNA hybridization no significant DNA binding (< 25%) was found. In contrast a significant but low degree of DNA/DNA hybridization was found between the 2nIII strains and Av. facilis and Av. delafieldii. Our polyphasic results lead to the conclusion that the 2nIII strains may constitute a separate Acicdovorax species.  相似文献   

14.
The regulation of 4-hydroxybutyrate (4HB) molar fraction in the poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] of a local isolate Cupriavidus sp. USMAA1020 was attempted by employing a feeding strategy through fed-batch fermentation in 100-L fermenter. The growth of Cupriavidus sp. USMAA1020 was enhanced by frequently feeding carbon and nitrogen at a ratio of 5 (C/N 5) using a DO-stat with cascade mode at 20% (v/v) dissolved oxygen (DO). The feeding of C/N 5 and the use of the DO-stat mode were able to regulate the 4HB composition from 0–67 mol% by sequential feeding of γ-butyrolactone and supplementing oleic acid. A high 4HB molar fraction of 67 mol% with a PHA concentration of 5.2 g/L was successfully obtained by employing this feeding strategy. Notably, enzymatic degradation carried out enhanced the 4HB composition of the copolymer synthesized. PHB depolymerase enzyme from Acidovorax sp. was used to degrade this P(3HB-co-70-mol%4HB) copolymer and the 4HB composition could be increased up to 83 mol%. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The percentage of weight loss of solvent-cast film increased proportionally up to 19% within 3 h, whereas salt-leached films showed 90% of weight loss within 3 h of incubation and were completely degraded by 4 h. The molecular weight (M n ) of the films treated with enzyme demonstrated a slight decrease. SEM observation exhibited a rough surface morphology of the copolymer degraded with depolymerase enzyme.  相似文献   

15.
Biosynthesis of poly-3-hydroxybutyrate by Sphaerotilus natans   总被引:4,自引:0,他引:4  
A sheathed bacterium Sphaerotilus natans could not survive at 4°C for 2 months, and mutants that exhibited different colony phenotypes were obtained only by repeating the short period of storage at 4 °C. The ability of these mutants and the parent strain to produce poly-3-hydroxybutyrate (PHB) was compared in batch cultures. The parent strain accumulated 30% (w/w) PHB, while one of the mutants defective in sheath formation, designated as T2, accumulated over 50% PHB. Because T2 did not require strict air or nitrogen limitation for polymer accumulation, its production was growth-associated, allowing one-stage fermentation. In a pH-controlled fermentation using a jar fermentor, 10 g/l glucose was converted into 2.0 g/l PHB in 24 h.  相似文献   

16.
Summary Recovery of poly-3-hydroxybutyrate (PHB) in three chlorinated solvents with or without acetone pretreatment and degradation of extracted PHB (99% pure) in hot chloroform were studied. When lyophilized Alcaligenes eutrophus biomass was used, the best results were obtained with acetone pretreatment and solvent reflux for 15 min in methylene chloride or chloroform. Recovered PHB had a 95% purity and molecular weights (Mw) of 1,050,000 and 930,000 g/mol respectively. Further heating resulted in a serious Mw, loss at reflux temperatures. Degradation of extracted PHB at 110°C in chloroform was due to random and chain-end scission, the former being predominant.  相似文献   

17.
Poly-3-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) was produced using a co-culture of activated sludge. When butyric acid was used as sole carbon source, PHB was produced. When valeric acid was added to the medium, PHBV was produced. The 3-hydroxyvalerate (3HV) mole fraction in the PHBV reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV units in the co-polymer increased from 0.0 to 54.0 mol%, the melting temperature ( T m ) decreased from 178 to 99°C. The composition, and hence the mechanical properties, of the co-polymer produced by activated sludge can be controlled by adjusting the medium composition.  相似文献   

18.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to 60 mol%) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical properties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extracellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degradation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydrophilicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copolyesters.  相似文献   

19.
Azospirillum strains isolated from the roots and rhizosphere of some plants growing in West Bengal were subjected to qualitative and quantitative evaluation for poly-3-hydroxybutyrate (PHB) production. Out of the total 49 isolates, 13 (26%) were confirmed as PHB producers according to staining and chemical assay methods. The majority of these strains belonged toAzospirillum brasilense butA. amazonense andA. lipoferum were also present. When grown in the presence of NH4Cl in the medium, the PHB content of the strains ranged from 1 to 14% of cell dry mass. The identity of the PHB extracted fromAzospirillum strain 24P-N-72 was confirmed by the characteristic UV and IR absorption peaks at 235 nm and 1730 cm−1, respectively.  相似文献   

20.
Bacillus mycoides strain RIJ B-017, a growth-associated poly-3-hydroxybutyrate (PHB) producer was grown on sucrose-containing media. PHB accumulated in cells up to 72% of dry cell mass. The overall maximum value of PHB yield (Y p/s) and productivities (Q p andq p) 250 mgp/gs, 120 mgp L−1 h−1 and 30 mgp gx −1 h−1, respectively, were obtained at 15 g/L sucrose. Differential scanning calorimeter heating curve showed two peaks, one at 95.9 °C and another at 165.4°C with a shoulder around 154.6 °C. The viscosity-average molar mass in chloroform at 27°C was 505 kDa. The carbon content of PHB was 55.4% of the mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号