首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Prep1, a novel functional partner of Pbx proteins.   总被引:15,自引:1,他引:14       下载免费PDF全文
  相似文献   

16.
17.
The GnRH gene uses two well-defined regions to target expression to a small population of hypothalamic GnRH neurons: a 173-bp proximal promoter and a 300-bp enhancer localized at approximately -1800 to -1500 bp from the start site. Interaction of multiple factors with the GnRH enhancer and promoter is required to confer neuron-specific expression in vivo and in cells in culture. In addition, the expression of the GnRH gene is regulated by numerous neurotransmitters and hormones. Several of these effectors act through membrane receptors to trigger the protein kinase C pathway, and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a modulator of this pathway, has been shown to suppress GnRH gene expression through the promoter. We find that TPA suppresses expression through the GnRH enhancer as well as the promoter. In the enhancer, an Oct-1 binding site, a Pbx/Prep binding site, Msx/Dlx binding sites, and a previously unidentified protein-binding element at -1793, all contribute to TPA suppression. TPA treatment leads to decreased binding of Oct-1 and Pbx1a/Prep to their sites. However, a complex formed by GT1-7 nuclear extracts on the -1793 site is not affected by TPA treatment. It is known that cooperative interaction among multiple factors is necessary for GnRH gene expression; thus, one mechanism by which TPA suppresses GnRH gene expression is to disengage some of these factors from their cis-regulatory elements.  相似文献   

18.
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer-dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion-- reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H-U1 snRNP complex into a splicing enhancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号