首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the swim speed, dive depth and feeding rates of three Adélie penguins (Pygoscelis adeliae) foraging in summer 1998/1999 in Adélie Land, Antarctica were collected using dorsally-mounted loggers, in tandem with oesophageal temperature sensors. Swim speed could be integrated, together with the rate of change of depth, to determine dive and return-to-surface angles. Overall, birds increased rates of change of depth during commuting phases so that dive angles were steeper in dives terminating at greater depths. Angles of descent and ascent during feeding dives were greater than during non-feeding dives. Variation in the descent angle over time of particular dives was generally less than 10°, but the angles of the ascent phases varied more widely. The importance of selecting the optimum descent and ascent angles with respect to prey exploitation, oxygen stores and time gained in the feeding area over the course of a dive by diving at a steeper angle is discussed.  相似文献   

2.
The fine-scale feeding behaviour of free-ranging Adélie penguins (Pygoscelis adeliae) during a single foraging trip was investigated by monitoring three parameters simultaneously at a frequency of 1 Hz, these being depth, swim speed and oesophagus temperature. Ingestion events were detected as abrupt drops in the oesophageal temperature and related to the birds' foraging behaviour. Although a high percentage of oesophageal temperature loggers were rejected, 1 complete foraging trip was recorded for all the 3 parameters from 1 bird while 92% and 67% of the foraging trip was recorded for 2 other birds; 12.3% of the temperature drops occurred at the surface but they were mainly small, except 61 of them probably representing snow ingestion while the birds were on land. All other drops were observed during dives, 88% of them during the undulatory (and occasionally the ascent) phase of dives deeper than 40 m. The mean swim speed during non-feeding shallow and exploratory dives was relatively constant throughout the dive, around 2.1 m s-1, whereas during feeding deep dives, swim speed during the undulatory phase was lower (1.71 m s-1) than during the descent and ascent and was characterised by a series of rapid accelerations and decelerations; 42.6% of these accelerations were followed by one or more ingestion events and birds swam upward in 60% of the accelerations. Such multiple data recording opens new paths for the examination of the decision-making processes in foraging penguins.  相似文献   

3.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   

4.
J. P. Croxall    Y. Naito    A. Kato    P. Rothery    D. R. Briggs 《Journal of Zoology》1991,225(2):177-199
The pattern and characteristics of diving of two male blue-eyed shags Phalacrocorax atriceps were studied, using continuous-recording time-depth recorders, for a total of 15 consecutive days during which the depth, duration, bottom time, ascent and descent rates and surface intervals of 674 dives were recorded. Deep dives (> 35 m, averages80–90 m, max. 116 m) were twice as common (64% versus 34%) as shallow dives (< 21 m and 90% < 10 m). Deep dives were long (averages 2.7-4.1 min, max. 5.2 min) with half the time spent near maximum depth and fast travel speeds (averages 1.0-2.4 m s−1). Shallow dives were short (average 0.5 min, max. 1.3 min), without bottom time and with slow travel speeds (0.1–0.6 m s−1). The time spent at depth and the diet (mainly benthic fish and octopus) is consistent with benthic foraging; the function of shallow dives is uncertain. Male shags forage mainly in the afternoon in3–5 distinct bouts of diving. Within bouts (and shorter homogeneous sequences of diving) surface intervals are consistently2–3 times the preceding dive duration; in other shags the reverse is the case. Blue-eyed shag diving depth, duration and pattern is extreme amongst shags; and the relationship between dives and surface intervals suggests that they may regularly exceed their aerobic dive limit.  相似文献   

5.
Three juvenile narwhals captured during August 1998 in the northeast of Svalbard, Norway, were equipped with satellite-relayed data loggers (SRDLs) that transmitted diving and swim-speed data, in addition to location, for up to 46 days. A total of 1,354 complete dive cycles were recorded. Most of the diving was shallow and of short duration. Maximum recorded dive depth was 546 m, maximum recorded dive duration was 24.8 min, and maximum recorded swim-speed was 4.7 ms−1. Ascent speed, vertical ascent speed, descent speed and vertical descent speed were all significantly higher during deep dives (>200 m) than for shallow dives (<200 m). In addition both ascent and descent angles were much steeper for deep dives than during shallow dives. Most of the shallow diving seemed to be associated with travelling, with the animal shifting between various locations, while the deep diving (often to the bottom) for extended periods in some specific areas might have been associated with foraging. Even though the sample size in this study is small, the data are the first information available for movements and diving behaviour of narwhals near Svalbard.  相似文献   

6.
1. Empirical testing of optimal foraging models for breath-hold divers has been difficult. Here we report data from sound and movement recording DTags placed on 23 short-finned pilot whales off Tenerife to study the foraging strategies used to catch deep-water prey. 2. Day and night foraging dives had a maximum depth and duration of 1018 m and 21 min. Vocal behaviour during dives was consistent with biosonar-based foraging, with long series of echolocation clicks interspersed with buzzes. Similar buzzes have been associated with prey capture attempts in other echolocating species. 3. Foraging dives seemed to adapt to circadian rhythms. Deep dives during the day were deeper, but contained fewer buzzes (median 1), than night-time deep dives (median 5 buzzes). 4. In most deep (540-1019 m) daytime dives with buzzes, a downward directed sprint reaching up to 9 m s(-1) occurred just prior to a buzz and coincided with the deepest point in the dive, suggestive of a chase after escaping prey. 5. A large percentage (10-36%) of the drag-related locomotion cost of these dives (15 min long) is spent in sprinting (19-79 s). This energetic foraging tactic focused on a single or few prey items has not been observed previously in deep-diving mammals but resembles the high-risk/high-gain strategy of some terrestrial hunters such as cheetahs. 6. Deep sprints contrast with the expectation that deep-diving mammals will swim at moderate speeds optimized to reduce oxygen consumption and maximize foraging time at depth. Pilot whales may have developed this tactic to target a deep-water niche formed by large/calorific/fast moving prey such as giant squid.  相似文献   

7.
Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators.  相似文献   

8.
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.  相似文献   

9.
THOMAS ALERSTAM 《Ibis》1987,129(S1):267-273
Measurements in 10-s intervals by a tracking radar showed average speeds of about 25 ms-1 for a Peregrine Falcon Falco peregrinus and a Goshawk Accipiter gentilis during four stoops lasting 40–110 s, with angles of dive between 13o and 64o, and involving height losses between 450 and 1080 m. Maximum speeds during 10-s intervals were between 31 and 39 ms-1 in the Peregrine Falcon, and close to 30 ms-1 in the Goshawk. The observed speeds are well below the maximum possible terminal speeds in steep or vertical dives according to theoretical estimation. By adopting a moderate stooping speed, raptors may gain in hunting precision.  相似文献   

10.
Northern gannets (Sula bassana) are considered to obtain prey usually by rapid, vertical, shallow plunge dives. In order to test this contention and investigate underwater foraging behaviour, we attached two types of data-logging systems to 11 parental northern gannets at Funk Island in the North-Wiest Atlantic. We documented, for the first time to the authors' knowledge, gannets performing long, flat-bottomed, U-shaped dives that involved underwater wing propulsion as well as rapid, shallow, V-shaped dives. The median and maximum dive depths and durations were 4.6 and 22.0 m and 8 and 38 s, respectively. Short, shallow dives were usually V-shaped and dives deeper than 8 m and longer than 10 s were usually U-shaped, including a period at constant depth (varying between 4 and 28s with median 8s). Diving occurred throughout the daylight period and deepest dives were performed during late morning. On the basis of motion sensors in the loggers and food collections from telemetered birds, we concluded that extended, deep dives were directed at deep schools of capelin, a small pelagic fish, and we hypothesized that V-shaped dives were aimed at larger, pelagic fishes and squids. Furthermore, these V-shaped dives allowed the birds to surprise their pelagic prey and this may be critical because the maximum swimming speeds of the prey species may exceed the maximum dive speeds of the birds.  相似文献   

11.
We attached a video system and data recorder to a northern elephant seal to track its three-dimensional movements and observe propulsive strokes of the hind flippers. During 6 h of recording, the seal made 20 dives and spent 90% of the time submerged. Average dive duration, maximum depth and swimming speed were 14.9 min+/-6.1 S.D., 289 m+/-117 S.D. and 1.1 m s(-1)+/-0.12 S.D., respectively. The distance swum during a dive averaged 925 m+/-339 S.D., and the average descent and ascent angles were 41 degrees +/-18 S.D. and 50 degrees +/-21 S.D., respectively. Dive paths were remarkably straight suggesting that the seal was navigating while submerged. We identified three modes of swimming based on the interval between propulsive strokes: continuous stroking; stroke-and-glide swimming; and prolonged gliding. The seal used continuous stroking from the surface to a mean depth of 20 m followed by stroke-and-glide swimming. Prolonged gliding started at a mean depth of 60 m and continued to the bottom of dives. For dives to depths of 300 m or more, 75% of the descent time was spent in prolonged gliding and 10% in stroke-and-glide swimming, amounting to 5.9-9.6 min of passive descent per dive. Average swimming speed varied little with swimming mode and was not a good indicator of propulsive effort. It appears that the seal can use prolonged gliding to reduce the cost of transport and increase dive duration. Energetically efficient locomotion may help explain the long and deep dives that routinely exceed the theoretical aerobic dive limit in this species.  相似文献   

12.
We examined the biological characteristics of euphausiids found in the stomachs of Adélie penguins in relation to sea-ice conditions in Lützow-Holm Bay over three seasons. Euphausiids, especially Euphausia superba, proved to be a staple food for Adélie penguins irrespective of the ice condition. Body length and maturity-stage compositions of euphausiids were different among seasons, probably reflecting sea-ice condition in summer. The mean body length decreased and maturity regressed during each season in E. superba, which was partly attributable to the selective feeding on large, mature female krill by Adélie penguins. The 1995/1996 year class of E. superba, which was spawned when the sea ice was most developed, was strong and conspicuous in the 1996/1997 and 1997/1998 seasons. This vigor indicates that sea ice provided females with good spawning conditions and larvae with good growth and survival rates.  相似文献   

13.
The speed at which air-breathing marine predators that forage by diving should swim is likely to depend on a variety of factors that differ substantially from those relevant in animals for which access to oxygen is unlimited. We used loggers attached to free-living penguins to examine the speed at which three species swam during periods searching for prey and compared this to their speeds during actual prey pursuit. All penguin species appeared to travel at similar speeds around 2 m/s during normal commuting between the surface and feeding depths, which accords closely with minimum costs of transport. However, Adélie penguins, Pygoscelis adeliae, slowed down to feed, Magellanic penguins, Spheniscus magellanicus, speeded up and king penguins, Aptenodytes patagonicus, travelled at a variety of speeds, although mean speed did not change from normal commuting. Since energy expenditure, and therefore oxygen usage, in swimming animals increases with the cube of the speed, we hypothesized that prey escape speed (a function of prey size) and prey density would prove critical in determining optimum pursuit speeds in predators. Simple models of this type help explain why it is that some penguin species apparently benefit by increasing speed to capture prey while others benefit by decreasing speed.  相似文献   

14.
The energetic costs of swimming at the surface (swimming) and swimming underwater (diving) are compared in tufted ducks (Aythya fuligula) and three species of penguins, the gentoo (Pygoscelis papua), the king (Aptenodytes patagonicus), and the emperor (Aythya forsteri). Ducks swim on the surface and use their webbed feet as paddles, whereas penguins tend to swim just below the surface and use their flippers as hydrofoils, the latter being much more efficient. Penguins are more streamlined in shape. Thus, the amount of energy required to transport a given mass of bird a given distance (known as the cost of transport) is some two to three times greater in ducks than in penguins. Ducks are also very buoyant, and overcoming the force of buoyancy accounts for 60% and 85% of the cost of descent and remaining on the bottom, respectively, in these birds. The energy cost of a tufted duck diving to about 1.7 m is similar to that when it is swimming at its maximum sustainable speed at the surface (i.e., approximately 3.5 times the value when resting on water). Nonetheless, because of the relatively short duration of its dives, the tufted duck dives well within its calculated aerobic dive limit (cADL, usable O(2) stores per rate of O(2) usage when underwater). However, these three species of penguins have maximum dive durations ranging from 5 min to almost 16 min and maximum dive depths from 155 to 530 m. When these birds dive, they have to metabolise at no more than when resting in water in order for cADL to encompass the duration of most of their natural dives. In gentoo and king penguins, there is a fall in abdominal temperature during bouts of diving; this may reduce the oxygen requirements in the abdominal region, thus enabling dive duration to be extended further than would otherwise be the case.  相似文献   

15.
We present data on the diving behaviour and the energetics of breeding little penguins in Tasmania, Australia. Using an 18 m long still water canal in conjunction with respirometry, we determined the energy requirements while diving. Using electronic devices measuring dive depth or swimming speed, we investigated the foraging behaviour at sea. Cost of Transport was calculated to be minimal at the speed the birds prefer at sea (1.8 m/s) and averaged 11.1 J/kg/m (power requirements at that speed: 20.0 W/kg). Metabolic rate of little penguins resting in water was found to be 8.5 W/kg. The externally-attached devices had no significant influence on the energy expenditure.
Foraging trips can be divided into four distinct phases with different diving behaviours. A mean of 500 dives was executed per foraging trip lasting about 18 hours with 60% of this time being spent swimming. The total distance travelled averaged 73 km per day, although foraging range was about 12km. Mean swimming speed of little penguins at sea was 1.8 m/s, maximum swimming speed was 3.3 m/s. More than 50% of all dives had maxima not exceeding 2 m. Maximum depth reached was 27 m. Mean dive duration was 21 s. There were inter-sex differences in diving behaviour as well as changes in foraging behaviour over the breeding period. Aerobic dive limits (ADL) in the wild were estimated between 42 and 50 s. From the swim canal experiments we derived an ADL of 44 s. Total oxygen stores were calculated to be 45 ml O2/kg. Only 2% of all dives exceeded the ADL. FMRs at sea were calculated to be between 1280 and 1500 kJ/kg/d according to chick size. The yearly food requirements of a breeding little penguin amount to 114 kg.  相似文献   

16.
Power produced by red myotomal muscles of fish during cruise swimming appears seldom maximized, so we sought to investigate whether economy may impact or dominate muscle function. We measured cost of transport (COT) using oxygen consumption and the strain trajectories and electromyographic activity of red muscle measured at anterior (ANT) and posterior (POST) locations while Atlantic cod (Gadus morhua) swam steadily at speeds between 0.3 and 1.0 body lengths (BL) s(-1). We then measured the power produced by isolated segments of red muscle when activated either as in the swimming cod or such that maximal net power was produced. Patterns of activation during swimming were not optimal for power output and were highly variable between tail beats, particularly at the ANT location and at slow swim speeds. Muscle strain amplitude did not increase until swimming speed reached 0.9 (ANT) versus 0.5 (POST) BL s(-1). These limited power to only 53% (ANT) and 71% (POST) of maximum at slower swim speeds and to 70%-80% of maximum at high swim speeds. COT (resting metabolism subtracted) was minimal at the slowest swim speed, surprisingly, where power was most impaired by activation and strain. Thus, production of powered forces for maneuverability/stability appeared to greatly impact red muscle function during cruise swimming in cod, particularly at slow speeds and in ANT muscle.  相似文献   

17.
The underwater behaviour of 11 belugas or white whales was examined during summer using time-at-depth records relayed by satellite-linked data-loggers. Simultaneous tracking information was obtained for each whale. Eight distinct dive profiles were identified in submergences made to depths of >40 m. Four of these, together comprising 84% of these “deep” dives, were of a square profile. They were characterised by a continuous descent to a particular depth (usually the sea bed), a “bottom phase” at or near that depth, and a direct ascent to the surface. These dives are presumed to be made for benthic foraging. Other, much less common, dive shapes were “V”-shaped, parabolic and trapezoidal. “Shallow” dives (15–40 m depth) were of a variety of shapes, short duration and high average horizontal speeds. Many probably occurred during periods of directed travel. This population of belugas treats most of the water column as dead space separating resources of oxygen and nutrition. Received: 8 January 1998 / Accepted: 27 April 1998  相似文献   

18.
Adélie Pygoscelis adeliae and Chinstrap P. antarctica penguins are important consumers of Southern Ocean marine resources. The stomach contents of adult penguins at Signy Island, South Orkney Islands, were analysed quantitatively throughout the chick-rearing period. They consisted almost exclusively of Antarctic krill Euphausia superba , Adélies eating 35–63% by number and 23–28% by weight of juvenile krill and Chinstraps 72–87% by number and 90–95% by weight of mature krill, as well as small amounts offish and amphipods. Interspecific dietary differences may partly be attributable to Adélies starting breeding one month before Chinstraps but, as they persist when both are simultaneously rearing chicks, the two species may also forage in somewhat different areas.
Krill data from net hauls indicate a substantial overlap in the size of krill taken by scientific, and probably also commercial, operations and by Adélie and Chinstrap penguins.
Chicks were fed c. 300 g of food 0–5-0-8 times per day, Chinstrap chicks without a sibling being fed most frequently. Chicks of both species were most often fed in the late afternoon, and from estimates of swimming speed and feeding frequency adults may feed quite extensively at night.  相似文献   

19.
Semi‐aquatic mammals have secondarily returned to the aquatic environment, although they spend a major part of their life operating in air. Moving both on land, as well as in, and under water is challenging because such species are considered to be imperfectly adapted to both environments. We deployed accelerometers combined with a depth sensor to study the diving behavior of 12 free‐living Eurasian beavers Castor fiber in southeast Norway between 2009 and 2011 to examine the extent to which beavers conformed with mass‐dependent dive capacities, expecting them to be poorer than wholly aquatic species. Dives were generally shallow (<1 m) and of short duration (<30 s), suggesting that the majority of dives were aerobic. Dive parameters such as maximum diving depth, dive duration, and bottom phase duration were related to the effort during different dive phases and the maximum depth reached. During the descent, mean vectorial dynamic body acceleration (VeDBA—a proxy for movement power) was highest near the surface, probably due to increased upthrust linked to fur‐ and lung‐associated air. Inconsistently though, mean VeDBA underwater was highest during the ascent when this air would be expected to help drive the animals back to the surface. Higher movement costs during ascents may arise from transporting materials up, the air bubbling out of the fur, and/or the animals’ exhaling during the bottom phase of the dive. In a manner similar to other homeotherms, beavers extended both dive and bottom phase durations with diving depth. Deeper dives tended to have a longer bottom phase, although its duration was shortened with increased VeDBA during the bottom phase. Water temperature did not affect diving behavior. Overall, the beavers’ dive profile (depth, duration) was similar to other semi‐aquatic freshwater divers. However, beavers dived for only 2.8% of their active time, presumably because they do not rely on diving for food acquisition.  相似文献   

20.
Archival tags were used to study the movement and depth behaviour of school sharks, Galeorhinus galeus, in southern australia. Thirty fish were tagged in late 1997, and to date there have been nine recaptures (30% recapture rate). Periods at liberty varied from 8 days to 18 months. The sharks spent about 80% of their time on the continental shelf, and appeared to swim close to the bottom during the day. At night they often ascended for periods of up to several hours, except at times around the full moon. When in deep water, the sharks typically descended at dawn to depths of up to 600m, before ascending at dusk. It was not possible to use the light data from the tags to estimate position when the sharks were in deep water, because they were often at depths beyond the sensitivity of the tag. In shallower water, longitude was estimated from the light data but latitude was estimated from the maximum daily depth, assuming the fish were on the bottom. The timing of the dives in deepwater appeared sufficiently regular to offer the prospect of using it to estimate longitude. We propose future research using archival tags on this species should address questions about female reproductive migrations, pelagic behaviour and vertical movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号