首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antimicrobial activity of lactoferrin: Current status and perspectives   总被引:12,自引:0,他引:12  
Nicola Orsi 《Biometals》2004,17(3):189-196
Lactoferrin (Lf) is a multifunctional iron glycoprotein which is known to exert a broad-spectrum primary defense activity against bacteria, fungi, protozoa and viruses. Its iron sequestering property is at the basis of the bacteriostatic effect, which can be counteracted by bacterial pathogens by two mechanisms: the production of siderophores which bind ferric ion with high affinity and transport it into cells, or the expression of specific receptors capable of removing the iron directly from lactoferrin at the bacterial surface. A particular aspect of the problem of iron supply occurs in bacteria (e.g. Legionella) which behave as intracellular pathogens, multiplying in professional and non professional macrophages of the host. Besides this bacteriostatic action, Lf can show a direct bactericidal activity due to its binding to the lipid A part of bacterial LPS, with an associated increase in membrane permeability. This action is due to lactoferricin (Lfc), a peptide obtained from Lf by enzymatic cleavage, which is active not only against bacteria, but even against fungi, protozoa and viruses. Additional antibacterial activities of Lf have also been described. They concern specific effects on the biofilm development, the bacterial adhesion and colonization, the intracellular invasion, the apoptosis of infected cells and the bactericidal activity of PMN. The antifungal activity of Lf and Lfc has been mainly studied towards Candida, with direct action on Candida cell membranes. Even the sensitivity of the genus tricophyton has been studied, indicating a potential usefulness of this molecule. Among protozoa, Toxoplasma gondii is sensitive to Lf, both in vitro and in vivo tests, while Trichomonads can use lactoferrin for iron requirements. As to the antiviral activity, it is exerted against several enveloped and naked viruses, with an inhibition which takes place in the early phases of viral invection, as a consequence of binding to the viral particle or to the cell receptors for virus. The antiviral activity of Lf has also been demonstrated in in vivo model invections and proposed for a selective delivery of antiviral drugs. The new perspectives in the studies on the antimicrobial activity of Lf appear to be linked to its potential prophylactic and therapeutical use in a considerable spectrum of medical conditions, taking advantage of the availability of the recombinant human Lf. But the historical evolution of our knowledge on Lf indicates that its antimicrobial activity must be considered in a general picture of all the biological properties of this multifunctional protein.  相似文献   

2.
The ubiquitin-proteasome system has been shown to play an important role in the replication cycle of different viruses. In this study, we describe a strong impairment of rotavirus replication upon inhibition of proteasomal activity. The effect was evidenced at the level of accumulation of viral proteins, viral RNA, and yield of infective particles. Kinetic studies revealed that the early steps of the replicative cycle following attachment, entry, and uncoating were clearly more sensitive to proteasome inhibition. We ruled out a direct inhibition of the viral polymerase activities and stability of viral proteins and found that the crucial step that was impaired by blocking proteasome activity was the assembly of new viroplasms. This was demonstrated by using chemical inhibitors of proteasome and by gene silencing using small interfering RNAs (siRNAs) specific for different proteasomal subunits and for the ubiquitin precursor RPS27A. In addition, we show that the effect of proteasome inhibition on virus infection is not due to increased levels of beta interferon (IFN-β).  相似文献   

3.
There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and the tick-borne encephalitis virus (TBEV). In particular, potent antiviral activity was observed against TBEV. Time-of-drug-addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic replicon (that does not encode structural proteins) replication. Using a microsopy-based binding and fusion assay employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry) of the infection. Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also inhibiting antibody-dependent enhancement (ADE). In conclusion, LCTA-949 exerts in vitro activity against several flaviviruses and does so (as shown for DENV) by interfering with an early step in the viral replication cycle.  相似文献   

4.
Although the antiviral activity of lactoferrin is one of the major biological functions of this iron binding protein, the mechanism of action is still under debate. We have investigated the role of metal binding, of sialic acid and of tryptic fragments of bovine lactoferrin (bLf) in the activity towards rotavirus (intestinal pathogen naked virus) infecting enterocyte-like cells. The antiviral activity of bLf fully saturated with manganese or zinc was slightly decreased compared to that observed for apo- or iron-saturated bLf. The antiviral activity of differently metal-saturated bLf towards rotavirus was exerted during and after the virus attachment step. The removal of sialic acid enhanced the anti-rotavirus activity of bLf. Among all the peptidic fragments obtained by tryptic digestion of bLf and characterised by advanced mass spectrometric methodologies, a large fragment (86-258) and a small peptide (324-329: YLTTLK) were able to inhibit rotavirus even if at lower extent than undigested bLf.  相似文献   

5.
Human lactoferrin (Lf) is an iron binding glycoprotein that is present in several mucosal secretions. Many biological functions have been ascribed to Lf. In the present study, we showed that Lf limited specifically adsorption of R5- and X4-HIV-1-free particles on endometrial epithelial HEC-1A cells, by inhibiting virus adsorption on heparan-sulfated proteoglycans. But, Lf did not interfere with both R5 and X4-HIV transcytosis. We showed also the efficacy of Lf in preventing R5 and X4-HIV capture by dendritic cells. Conversely, we demonstrated that Lf-reacting natural Abs (NAbs) present within i.v. Ig-enhanced HIV attachment on dendritic cells by forming HIV-Lf-NAbs. HIV particles were able to directly interact with Lf following its interaction with NAbs. We also found Lf-reacting natural Abs within cervicovaginal secretions, suggesting the existence of Lf-NAbs complexes in women genital tract in vivo. In conclusion, this study highlights Lf as a potent microbicides and reports new function for NAbs within the genital compartment that may compartment that may abolish the inhibitory activity of microbicide compounds. Thus, we proposed a model in which Lf would appear as a double-edged sword that could have beneficial or detrimental effects depending on both cellular and molecular environments. This study highlights the use of Lf derivates as microbicide candidates to limit such interferences.  相似文献   

6.
Despite of differences in replication strategy among virus families, some basic principles have remained similar. Analogous mechanisms govern virus entry into cells and the use of enzymes which direct the replication of the virus genome. The function of many cell surface receptors (such as glycosoaminoglycans, glycoproteins, proteins) which interact with viral capsid proteins or envelope glycoproteins has recently been elucidated. The list of cellular receptors (Table I) is still far from being final. The capsid components, similarly as the envelope glycoproteins, may form specific pocket like sites, which interact with the cell surface receptors. Neutralizing antibodies usually react with antigenic domains adjacent to the receptor binding site(s) and hamper the close contact inevitable for virion attachment. In the case of more complex viruses, such as herpes simplex virus, different viral glycoproteins interact with several cellular receptors. At progressed phase of adsorption the virions are engulfed into endocytic vesicles and the virion fusion domain(s) become(s) activated. The outer capsid components of reoviruses which participate in adsorption and fusion may get activated already in the lumen of digestive tract, i.e. before their engulfment by resorptive epithelium cells. Activation of the hydrophobic fusion domain(s) is a further important step allowing to pass through the lipid bilayer when penetrating the cell membrane in order to reach the cytosol. Activation of the virion fusion domain is accomplished by a conformation change, which occurs at acid pH (influenza virus hemagglutinin, sigma 1 protein of the reovirus particle) and/or after protease treatment. The herpes simplex virus fusion factors (gD and gH) undergo conformation changes by a pH-independent mechanism triggered due to interaction with the cell surface receptor(s) and mediated by mutual interactions with the viral envelope glycoproteins. The virion capsid or envelope components participating in the entry and membrane fusion are not the only tools of virulence. The correct function of virus coded proteins, which participate in replication of the viral genome, and/or in the supply of necessary nucleotides, may be very essential. In the case of enteroviruses, which RNA interacts with ribosomes directly, the correct configuration of the non-coding viral RNA sequence is crucial for initiation of translation occurring in the absence of the classical "cap" structure.  相似文献   

7.
ABSTRACT: BACKGROUND: Glycyrrhizin (GA) and primary metabolite 18beta-glycyrrhetinic acid (GRA) are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines. METHODS: Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein. RESULTS: GRA treatment reduced rotavirus yields by 99% when added to infected cultures post- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry. CONCLUSIONS: GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway.  相似文献   

8.
Specific binding of lactoferrin to Aeromonas hydrophila.   总被引:4,自引:0,他引:4  
The interaction of lactoferrin (Lf) with Aeromonas hydrophila (n = 28) was tested in a 125I-labeled protein-binding assay. The mean per cent binding values for human Lf (HLf) and bovine Lf (BLf) were 13.4 +/- 2.0 (SEM), and 17.5 +/- 2.7 (SEM), respectively. The Lf binding was characterized in type strain A. hydrophila subsp. hydrophila CCUG 14551. The HLf and BLf binding reached a complete saturation within 2 h. Unlabeled HLf and BLf displaced 125I-HLf binding in a dose-dependent manner, and more effectively by the heterologous (1 microgram for 50% inhibition) than the homologous (10 micrograms for 50% inhibition) ligand. Apo- and holo-forms of HLf and BLf both inhibited more than 80%, while mucin caused approx. 50% inhibition of the HLf binding. Various other proteins (including transferrin) or carbohydrates did not block the binding. Two HLf-binding proteins with an estimated molecular masses of 40 kDa and 30 kDa were identified in a boiled-cell-envelope preparation, while the unboiled cell envelope demonstrated a short-ladder pattern at the top of the separating gel and a second band at approx. 60 kDa position. These data establish a specific interaction of Lf and the Lf-binding proteins seem to be porins in A. hydrophila.  相似文献   

9.
Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.  相似文献   

10.
African swine fever virus induces in convalescent pigs antibodies that neutralized the virus before and after binding to susceptible cells, inhibiting both virus attachment and internalization. A further analysis of the neutralization mechanisms mediated by the different viral proteins showed that antibodies to proteins p72 and p54 are involved in the inhibition of a first step of the replication cycle related to virus attachment, while antibodies to protein p30 are implicated in the inhibition of virus internalization.  相似文献   

11.
周跃钢 《生命科学》2010,(8):749-754
病毒感染的初期事件包括病毒与细胞表面受体的相互作用和进入细胞的过程,而病毒的宿主细胞专一性很大程度上取决于这一阶段的专一识别特征和特殊要求。人乳头状瘤病毒、人免疫缺陷病毒和单纯疱疹病毒是感染人类的几种常见病原物,该文简要综述和讨论了与人体健康关系密切的这三种重要病毒表面的蛋白组分、宿主细胞表面受体及其相互作用和病毒的细胞进入的研究进展,以及在以病毒的细胞进入过程为靶点的抗病毒药物研发中的应用前景。  相似文献   

12.
Interferon does not inactivate viruses or viral RNA. Virus growth is inhibited in interferon-treated cells, but apart from conferring resistance to virus growth, no other effect of interferon on cells has been definitely shown to take place. Interferon binds to cells even in the cold, but a period of incubation at 37°C is required for development of antiviral activity. Cytoplasmic uptake of interferon has not been unequivocally demonstrated. Studies with antimetabolites indicate that the antiviral action of interferon requires host RNA and protein synthesis. Experiments with 2-mercapto-1(β-4-pyridethyl) benzimidazole (MPB) suggest that an additional step is required between the binding and the synthesis of macromolecules. Interferon does not affect the adsorption, penetration, or uncoating of RNA or DNA viruses, but viral RNA synthesis is inhibited in cells infected with RNA viruses. The main action of interferon appears to be the inhibition of the translation of virus genetic information probably by inhibiting the initiation of virus protein synthesis.  相似文献   

13.
Numerous viruses rely on glycan receptor binding as the initial step in host cell infection. Engagement of specific glycan receptors such as sialylated carbohydrates, glycosaminoglycans, or histo‐blood group antigens can determine host range, tissue tropism, and pathogenicity. Glycan receptor‐binding sites are typically located in exposed regions on viral surfaces—sites that are also generally prone to binding of neutralizing antibodies that directly interfere with virus‐glycan receptor interactions. In this review, we examine the locations and architecture of the glycan‐ and antibody‐binding sites in four different viruses with stalk‐like attachment proteins (reovirus, influenza virus, norovirus, and coronavirus) and investigate the mechanisms by which antibodies block glycan recognition. Those viruses exemplify that direct molecular mimicking of glycan receptors by antibodies is rare and further demonstrate that antibodies often partly overlap or bind sufficiently close to the receptor‐binding region to hinder access to this site, achieving neutralization partially because of the epitope location and partly due to their sheer size.  相似文献   

14.
Lactoferrin (Lf), an iron-binding multifunctional glycoprotein, is abundantly present in colostrum and milk of different species such as humans, bovines, and mice. Our previous observation revealed that bovine colostral Lf is transported into the systemic circulation and cerebrospinal fluid from gut-lumen through receptor-mediated transcytosis in calves. Diarrhea caused by Escherichia coli is one of the important causes of infant morbidity and mortality in developing countries. We investigated the effects of bovine lactoferrin (BLf) on lipopolysaccharide (LPS)-induced diarrheogenic activity, gastrointestinal transit (GIT), and intestinal fluid content in mice. LPS accumulated abundant fluid in the small intestine in a dose-dependent manner, induced diarrhea, but decreased the GIT. Pretreatment with BLf significantly attenuated the effects of LPS on the diarrheogenic activity and intestinal content, but reversed the GIT when compared with NG-nitro-L-arginine-methyl ester (L-NAME, a non-selective NOS inhibitor) or indomethacin (an inhibitor of prostaglandin synthesis). Both plasma NO and PGE2 in enterocytes were found to increase in LPS-treated mice and were reversed by BLf. These findings demonstrate that the action of BLf against LPS was specific and it exerts antidiarrheal activity through modulating the cyclooxygenase [NO and PGE2] pathway in the gut.  相似文献   

15.
The inhibitory effect of bovine lactoferrin (BLf) saturated with ferric, manganese or zinc ions, on the infection of Vero cells by human herpes simplex virus type 1 (HSV1) and 2 (HSV2) was investigated. Viral infectivity determined by intracellular antigen synthesis and plaque formation was efficiently inhibited by metal saturated lactoferrins in a dose-dependent manner. Effective BLf concentrations which reduced the infection by 50% ranged from 5.2 to 31 mug ml and were far below the cytotoxicity threshold. Fe BLf and Mn BLf exhibited selectivity indexes higher than Zn BLf and apoBLf for both viruses and the effect was mainly directed towards the early steps of infection. The slight viral inhibition shown by the citrate complexes of the different metals could indicate that the antiviral effect was not significantly influenced by Fe , Mn or Zn ions delivered by BLf into the cells. © Rapid Science 1998  相似文献   

16.
During viremia, viruses may be cleared from the bloodstream and taken up by specific organs. The uptake of virus from the bloodstream is dependent on the association of viral particles with endothelial cells that line the luminal surfaces of large and small blood vessels. To understand the nature of this interaction, we have studied the binding of reovirus serotypes 1 and 3 to these cells in vitro. Both serotypes of reovirus productively infected endothelial cells. By using [35S]methionine-biolabeled reovirus as a tracer ligand, we found that both viruses rapidly bind to endothelial cells and that equilibrium is reached after 4 h. The binding of the radiolabeled viruses was saturable and mediated by a homogeneous population of cellular receptors with very high affinity (Kd = 0.5 nM) for the virus ligands. Both serotypes bind to the same receptor, since the attachment of each radiolabeled serotype is inhibited by both the homologous and heterologous unlabeled virus. Exposure of labeled virus to monoclonal antibodies directed against the viral hemagglutinin (sigma 1 protein) inhibited binding, demonstrating that the attachment of reovirus to endothelial cells is mediated by the hemagglutinin for both serotypes. By using a novel ligand-blotting assay, the binding of both viruses to a 54,000-dalton protein could be demonstrated. The binding of each radiolabeled serotype to this protein was inhibited by the homologous and heterologous unlabeled serotype. By using cell fractionation after homogenization, we demonstrated that this 54-kilodalton protein is a membrane protein, in agreement with its proposed role as a cell surface receptor for reovirus serotypes 1 and 3.  相似文献   

17.
The rotavirus capsid is composed of three concentric protein layers. Proteins VP4 and VP7 comprise the outer layer. VP4 forms spikes, is the viral attachment protein, and is cleaved by trypsin into VP8* and VP5*. VP7 is a glycoprotein and the major constituent of the outer protein layer. Both VP4 and VP7 induce neutralizing and protective antibodies. To gain insight into the virus neutralization mechanisms, the effects of neutralizing monoclonal antibodies (MAbs) directed against VP8*, VP5*, and VP7 on the decapsidation process of purified OSU and RRV virions were studied. Changes in virion size were followed in real time by 90 degrees light scattering. The transition from triple-layered particles to double-layered particles induced by controlled low calcium concentrations was completely inhibited by anti-VP7 MAbs but not by anti-VP8* or anti-VP5* MAbs. The inhibitory effect of the MAb directed against VP7 was concentration dependent and was abolished by papain digestion of virus-bound antibody under conditions that generated Fab fragments but not under conditions that generated F(ab')(2) fragments. Electron microscopy showed that RRV virions reacted with an anti-VP7 MAb stayed as triple-layered particles in the presence of excess EDTA. Furthermore, the infectivity of rotavirus neutralized via VP8*, but not that of rotavirus neutralized via VP7, could be recovered by lipofection of neutralized particles into MA-104 cells. These data are consistent with the notion that antibodies directed at VP8* neutralize by inhibiting binding of virus to the cell. They also indicate that antibodies directed at VP7 neutralize by inhibiting virus decapsidation, in a manner that is dependent on the bivalent binding of the antibody.  相似文献   

18.
Viruses are multivalent particles that attach to cells through one or more bonds between viral attachment proteins (VAP) and specific cellular receptors. Three modes of virus binding are presented that can explain the diversity in binding data observed among viruses. They are based on multivalency of attachment and spatial versus receptor saturation effects which are easily distinguished based upon simple criteria. Mode 1 involves only monovalent virus/receptor binding. Modes 2 and 3 involve multivalent bonds between the virus and cell; however, in mode 3 space on the cell surface becomes saturated before receptors. A model is developed for viral attachment that accounts for nonspecific binding, receptor/virus interactions, and spatial saturation effects. The model can describe each mode in different limits and can be applied to virus binding data to extract key physical information such as receptor number and affinity. These values are used to postulate the type of VAP/receptor interaction involved and to predict binding at different parameter values. For the mode 2 binding of Adenovirus 2, the model predicts a receptor number of 4-15 x 10(3) on HeLa cells and an affinity of 2-6 x 10(7) M-1 which closely approximate experimental estimates. For the binding of three, broad-host-range, enveloped viruses, Semliki Forest virus, Vesicular Stomatitis virus, and the baculovirus, Autographa californica nuclear polyhedrosis virus, the model predicts receptor numbers of 10(5) or greater and affinities in the range of 10(4) to 10(5) M-1. These values are indicative of a VAP/oligosaccharide interaction which has been documented for a number of other viruses. Experimental evidence is presented that is the first to demonstrate that baculovirus binding is mediated by a cell surface receptor.  相似文献   

19.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

20.
Rotaviruses, nonenveloped viruses presenting a distinctive triple-layered particle architecture enclosing a segmented double-stranded RNA genome, exhibit a unique morphogenetic pathway requiring the formation of cytoplasmic inclusion bodies called viroplasms in a process involving the nonstructural viral proteins NSP5 and NSP2. In these structures the concerted packaging and replication of the 11 positive-polarity single-stranded RNAs take place to generate the viral double-stranded RNA (dsRNA) genomic segments. Rotavirus infection is a leading cause of gastroenteritis-associated severe morbidity and mortality in young children, but no effective antiviral therapy exists. Herein we investigate the antirotaviral activity of the thiazolide anti-infective nitazoxanide and reveal a novel mechanism by which thiazolides act against rotaviruses. Nitazoxanide and its active circulating metabolite, tizoxanide, inhibit simian A/SA11-G3P[2] and human Wa-G1P[8] rotavirus replication in different types of cells with 50% effective concentrations (EC50s) ranging from 0.3 to 2 μg/ml and 50% cytotoxic concentrations (CC50s) higher than 50 μg/ml. Thiazolides do not affect virus infectivity, binding, or entry into target cells and do not cause a general inhibition of viral protein expression, whereas they reduce the size and alter the architecture of viroplasms, decreasing rotavirus dsRNA formation. As revealed by protein/protein interaction analysis, confocal immunofluorescence microscopy, and viroplasm-like structure formation analysis, thiazolides act by hindering the interaction between the nonstructural proteins NSP5 and NSP2. Altogether the results indicate that thiazolides inhibit rotavirus replication by interfering with viral morphogenesis and may represent a novel class of antiviral drugs effective against rotavirus gastroenteritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号